1
|
Chen X, Zheng X, Ali S, Guo M, Zhong R, Chen Z, Zhang Y, Qing H, Deng Y. Isolation and Sequencing of Salsolinol Synthase, an Enzyme Catalyzing Salsolinol Biosynthesis. ACS Chem Neurosci 2018; 9:1388-1398. [PMID: 29602279 DOI: 10.1021/acschemneuro.8b00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), a derivate of dopamine, is suspected to be the most probable neurotoxin in the degeneration of dopaminergic neurons. Numerous hypotheses regarding its pathophysiological roles have been raised, especially related to Parkinson's disease and alcohol addiction. In the mammalian brain, salsolinol may be enzymatically synthesized by salsolinol synthase from dopamine and acetaldehyde. However, the direct evidence of its biosynthesis was still missing. In this study, we purified salsolinol synthase from rat brain by a systematical procedure involving acid precipitation, ultrafiltration, and hydrophilic interaction chromatography. The molecular weight of salsolinol synthase determined by MALDI-TOF MS is 8622.29 Da, comprising 77 amino acids (MQIFVKTLTG KTITLEVEPS DTIKNVKAKI QDKEGIPPDQ QRLIFAGKQL EDGRTLSDYN IQKKSTLHLV LRLRVDY). Homology analysis showed that the enzyme is a ubiquitin-like protein, with a difference of four amino acids, which suggests it is a novel protein. After it was overexpressed in eukaryotic cells, the production of salsolinol was significantly increased as compared with control, confirming the catalytic function of this enzyme. To our knowledge, it is the first systematic purification and sequencing of salsolinol synthase. Together, this work reveals a formerly anonymous protein and urges further exploration of its possible prognostic value and implications in Parkinson's disease and other related disorders.
Collapse
Affiliation(s)
- Xuechai Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Xiaotong Zheng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Sakhawat Ali
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Minjun Guo
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Zixuan Chen
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Yongqian Zhang
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Hong Qing
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Yulin Deng
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| |
Collapse
|
2
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
3
|
Hashizume T, Watanabe R, Inaba Y, Sawai K, Fülöp F, Nagy GM. Hypothalamic dopamine is required for salsolinol-induced prolactin secretion in goats. Anim Sci J 2017; 88:1588-1594. [DOI: 10.1111/asj.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Yuki Inaba
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ken Sawai
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; Faculty of Pharmacy; University of Szeged; Szeged Hungary
| | - György Miklos Nagy
- Department of Anatomy; Ross University School of Medicine; Roseau Commonwealth of Dominica
| |
Collapse
|
4
|
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci 2017; 18:E551. [PMID: 28273839 PMCID: PMC5372567 DOI: 10.3390/ijms18030551] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer's disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson's disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson's disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS) structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin-proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina), and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase (MAO) inhibitors (selegiline, rasagiline), and catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone). The chronic administration of antiparkinsonian drugs currently induces the "wearing-off phenomenon", with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
| |
Collapse
|
5
|
Inaba Y, Kato Y, Itou A, Chiba A, Sawai K, Fülöp F, Nagy GM, Hashizume T. Effects of extracerebral dopamine on salsolinol- or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats. Anim Sci J 2016; 87:1522-1527. [DOI: 10.1111/asj.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Inaba
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Yuki Kato
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Azumi Itou
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Aoi Chiba
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ken Sawai
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; Faculty of Pharmacy, University of Szeged; Szeged Hungary
| | - György Miklos Nagy
- Neuromorphological and Neuroedocrine Research Laboratory; Department of Human Morphology, Hungarian Academy of Science and Semmelweis University; Budapest Hungary
| | | |
Collapse
|
6
|
Możdżeń E, Kajta M, Wąsik A, Lenda T, Antkiewicz-Michaluk L. Salsolinol, an endogenous compound triggers a two-phase opposing action in the central nervous system. Neurotox Res 2014; 27:300-13. [PMID: 25537852 PMCID: PMC4353863 DOI: 10.1007/s12640-014-9511-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/11/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), an endogenous compound present in the brain, was suspected of participation in the etiopathogenesis of Parkinson’s disease, the most common serious movement disorder worldwide. In this study, we evaluated the effect of different (50, 100, and 500 µM) concentrations of salsolinol on markers of glutamate-induced apoptotic and neurotoxic cell damage, such as caspase-3 activity, lactate dehydrogenase (LDH) release, and the loss of mitochondrial membrane potential. Biochemical data were complemented with the cellular analysis, including Hoechst 33342 and calcein AM staining, to visualize apoptotic DNA-fragmentation and to assess cell survival, respectively. The assessment of all investigated parameters was performed in primary cultures of rat or mouse hippocampal and striatum cells. Our study showed that salsolinol had biphasic effects, namely, at lower concentrations (50 and 100 µM), it demonstrated a distinct neuroprotective activity, whereas in the highest one (500 µM) caused neurotoxic effect. Salsolinol in concentrations of 50 and 100 µM significantly antagonized the pro-apoptotic and neurotoxic effects caused by 1 mM glutamate. Salsolinol diminished the number of bright fragmented nuclei with condensed chromatin and increased cell survival in Hoechst 33342 and calcein AM staining in hippocampal cultures. Additionally, in the low 50 µM concentration, it produced a significant inhibition of glutamate-induced loss of membrane mitochondrial potential. Only the highest concentration of salsolinol (500 µM) enhanced the glutamate excitotoxicity. Ex vivo studies indicated that both acute and chronic administration of salsolinol did not affect the dopamine metabolism, its striatal concentration or α-synuclein and tyrosine hydroxylase protein level in the rat substantia nigra and striatum. Summarizing, the present studies exclude possibility that salsolinol under physiological conditions could be an endogenous factor involved in the neurogenerative processes; conversely, it can exert a protective action on nerve cells in the brain. These findings may have important implications for the development of the new strategies to treat or prevent neural degeneration.
Collapse
Affiliation(s)
- Edyta Możdżeń
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland,
| | | | | | | | | |
Collapse
|
7
|
Jin J, Hashizume T. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats. Anim Sci J 2014; 86:634-40. [PMID: 25442325 DOI: 10.1111/asj.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH-releasing response to an intravenous (i.v.) injection of GH-releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L-dopa (1 mg/kg BW) in male and female goats under a 16-h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L-dopa treatments completely suppressed GH-releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)-releasing response to an i.v. injection of thyrotropin-releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L-dopa significantly reduced TRH-induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.
Collapse
Affiliation(s)
- Jin Jin
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | | |
Collapse
|