1
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype. Anim Biotechnol 2024; 35:2254568. [PMID: 37694839 DOI: 10.1080/10495398.2023.2254568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/12/2023]
Abstract
The thyroid gland is an important endocrine gland in animals, which mainly secretes thyroid hormones and acts on various organs of the body. Long-chain non-coding RNA (lncRNA) plays an important role in animal reproduction. However, there is still a lack of understanding of their expression patterns and potential roles in the thyroid of Small Tail Han (STH) sheep. In this study, RNA-seq was used to examine the transcriptome expression patterns of lncRNAs and mRNAs in the follicular phase (ww_FT) and luteal phase (ww_LT) in FecB++ genotype STH Sheep. A total of 17,217 lncRNAs and 39,112 mRNAs were identified including 96 differentially expressed lncRNAs (DELs) and 1054 differentially expressed mRNAs (DEGs). Functional analysis of genes with significant differences in expression level showed that these genes could be enriched in Ras signalling pathway, hedgehog (HH) signalling pathway, ATP-binding cassette (ABC) transporters and other signalling pathways related to animal reproduction. In addition, through correlation analysis for lncRNA-mRNA co-expression and network construction, we found that LNC_009115 and LNC_005796 trans target NIK-related kinase (NRK) and poly(A)-specific ribonuclease (PARN). LNC_007189 and LNC_002045 trans target progesterone-induced blocking factor 1 (PIBF1), LNC_009013 trans targets small mothers against decapentaplegic (SMAD1) are related to animal reproduction. These genes add new resources for elucidating the regulatory mechanisms of reproduction in sheep with different reproductive cycles of the FecB++ genotype STH sheep.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Keum J, Ryu KY, Roh J. Radioactive Iodine-induced hypothyroidism interferes with the maturation of reproductive organs during puberty in immature female rats. Toxicol Res 2023; 39:53-60. [PMID: 36726832 PMCID: PMC9839935 DOI: 10.1007/s43188-022-00147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Animal and human studies suggest that thyroid hormone may have critical roles in the development of the ovary. For example, thyroid deficiency disrupts the ovarian microarchitecture and menstrual cycle in neonate and adult women, respectively. Therefore, it is conceivable that thyroid deficiency might disrupt sexual maturation during the peri-pubertal period. To investigate the impact of radioactive iodine-induced thyroid deficiency on reproductive organs throughout puberty, immature female rats were given water containing radioactive iodine (0.37 MBq/g body weight) twice, on postnatal days 22 and 29. Radioactive iodine-induced hypothyroidism was revealed by low free thyroxin levels. Thyroid deficiency delayed the onset of vaginal opening, reduced ovarian weight and the number of medium-sized follicles and led to elongated uteri. However, there was no effect on the estrous cycle or absolute uterus weight. We conclude that radioactive iodine-induced thyroid deficiency delays sexual maturation and alters normal ovarian growth in peri-pubertal rats.
Collapse
Affiliation(s)
- Jihyun Keum
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, 04763 Republic of Korea
| | - Ki-Young Ryu
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Guri, 11923 Republic of Korea
| | - Jaesook Roh
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
3
|
Khayal EES, Ibrahim HM, Shalaby AM, Alabiad MA, El-Sheikh AA. Combined lead and zinc oxide-nanoparticles induced thyroid toxicity through 8-OHdG oxidative stress-mediated inflammation, apoptosis, and Nrf2 activation in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2589-2604. [PMID: 34553816 DOI: 10.1002/tox.23373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
A human is exposed to a chemical mixture rather than a single chemical, particularly with the wide spread of nanomaterials. Therefore, the present study evaluated the combined exposure of lead acetate (Pb) and zinc oxide-nanoparticles (ZnO-NPs) compared to each metal alone on the thyroid gland of adult rats. A total of 30 adult male albino rats were divided into four groups, group I (control), group II received Pb (10 mg/kg), group III received ZnO-NPs (85 mg/kg) and group IV co-administrated the two metals in the same previous doses. The materials were gavaged for 8 weeks. The toxicity was assessed through several biochemical parameters. Our results revealed significant body weight reduction relative to increased thyroid weights, decreased both of serum-free triiodothyronine (FT3), tetra-iodothyronine (FT4), increased thyroid-stimulating hormone (TSH), increased serum and thyroid levels of Pb and zinc, significant elevation in tumor necrosis factor-α (TNF-α), reduction in interleukin 4 (IL4), upregulation of Bax, and downregulation of Bcl-2 genes. Additionally, there was significant overexpression of nuclear factor erythroid 2-related factor 2(Nrf2), 8-Hydroxydeoxyguanosine(8-OHdG), the elevation of tissues malondialdehyde (MDA), reduction of tissues total antioxidant capacity (TAC), and disruptive thyroid structural alterations in all metals groups with marked changes in the combined metals group. In conclusion, the combined exposure of Pb and ZnO-NPs induced pronounced toxic thyroid injury, pointing to additive effects in rats than the individual metal effects through different significant changes of disruptive thyroid structural alterations related to the loading of thyroid tissues with Pb and zinc metals producing oxidative stress that mediated inflammation and apoptosis.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Abstract
Background Hyperthyroid females often complain of menstrual disturbances and impaired fertility. This study was designed to observe the effect of hyperthyroidism on ovarian folliculogenesis and the hypophyseal-gonadal axis. Methodology Adult female Wistar albino rats (n= 12), six to eight weeks of age, and weighing 70-162 g, were divided randomly into control (Group A) and experimental (Group B) groups. Group A received daily intraperitoneal injections of 250 µL normal saline (10 µL 5 µM NaOH dissolved in it) for 14 days. Group B received a daily intraperitoneal injection of levothyroxine (600 µg/kg body weight) to induce hyperthyroidism. Rats were weighed at the start and the end of the experimental period on the day of sacrifice. Results Statistical analysis of the data revealed successful induction of hyperthyroidism in Group B as their thyroid-stimulating hormone (TSH) levels decreased significantly. The ovarian size was significantly reduced in the hyperthyroid group (p < 0.029). There was a significant decrease in thickness of the ovarian capsule (p < 0.000), an increase in the number of primordial, primary, and secondary follicles (p < 0.001, 0.000, and 0.001, respectively), and a decrease in size of primary and secondary follicles (p < 0.041 and 0.020) in the hyperthyroid group. Conclusion Hyperthyroidism can affect ovarian cytoarchitecture, probably by acting directly on its receptors and thus affects female fertility.
Collapse
Affiliation(s)
- Tayyaba Mahmud
- Anatomy, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Qudsia U Khan
- Physiology, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Sarah Saad
- Physiology, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| |
Collapse
|
5
|
Wu L, Chen H, Ru H, Li Y, Yao F, Ni Z, Zhong L. Sex-specific effects of triphenyltin chloride (TPT) on thyroid disruption and metabolizing enzymes in adult zebrafish (Danio rerio). Toxicol Lett 2020; 331:143-151. [DOI: 10.1016/j.toxlet.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2019] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022]
|
6
|
Rosales M, Nuñez M, Abdala A, Mesch V, Mendeluk G. Thyroid hormones in ovarian follicular fluid: Association with oocyte retrieval in women undergoing assisted fertilization procedures. JBRA Assist Reprod 2020; 24:245-249. [PMID: 32155015 PMCID: PMC7365548 DOI: 10.5935/1518-0557.20200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Our aim was to analyze the role of thyroid hormones in follicular fluid (FF) in relation to the number of oocytes retrieved in women recruited for an assisted fertilization procedure. Methods: Retrospective cohort study of 51 women 37.5±3.3 years, range 29-42, evaluated after a controlled ovarian stimulation protocol in a University Hospital. FF was sampled by transvaginal ultrasound-guided aspiration after ovarian hyperstimulation and we measured T3 (T3f), T4 (T4f), TSH (TSHf) and free T4 (T4ff). The oocyte maturation rate was calculated as: Number of metaphase II oocytes/Number of oocytes retrieved x 100. Statistical analysis was performed using the SPSS-19 software. Results: Hormone levels in FF were: TSHf 1.3µIU/ml (0.4 - 2.7), T3f: 1.52±0.46 nmol/L, T4f 88.8±30.9nmol/L and T4ff: 15.44±2.57pmol/L. The number of oocytes recovered was dependent onT4f following the equation: Log (oocyte) = 0.379+0.042*T4f (r:0.352, p=0.012). After a logistic regression model analysis, T3f showed a tendency to be associated with the OMR: OR (95 % CI)= 0.977 (0.954 to 1.001), p=0.057. Conclusions: The correlation found between thyroid hormones and the number of oocytes retrieved suggests an interaction between thyroid and gonadal axes in relation to follicular development.
Collapse
Affiliation(s)
- Mónica Rosales
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica, Cátedra de Bioquímica Clínica I, Laboratorio de Endocrinología. Buenos Aires, Argentina.,Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC). Buenos Aires, Argentina
| | - Myriam Nuñez
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC). Buenos Aires, Argentina
| | - Andrea Abdala
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Matemática. Buenos Aires, Argentina
| | - Viviana Mesch
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica, Cátedra de Bioquímica Clínica I, Laboratorio de Endocrinología. Buenos Aires, Argentina.,Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC). Buenos Aires, Argentina
| | - Gabriela Mendeluk
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC). Buenos Aires, Argentina.,5Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica, Cátedra de Bioquímica Clínica II, Laboratorio de Fertilidad Masculina. Buenos Aires, Argentina
| |
Collapse
|
7
|
Zhang Z, Wang F, Zhang Y. Expression and Contribution of NLRP3 Inflammasome During the Follicular Development Induced by PMSG. Front Cell Dev Biol 2019; 7:256. [PMID: 31750302 PMCID: PMC6842944 DOI: 10.3389/fcell.2019.00256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Follicular development and following ovulation induced by luteinizing hormone (LH) surge are critical for ovarian functions, but the molecular mechanism regulating ovarian ovulation attracts more attention and remains mainly unknown. Recent researches on the nucleotide leukin rich polypeptide 3 (NLRP3) inflammasome shred light on it. Given pregnant mare serum gonadotropin (PMSG) can not only trigger the follicular development, but also induce the following ovulation, the present study therefore examined that expression and localization of NLRP3 inflammasome through immunohistochemistry and Western blotting during the follicular development induced by PMSG. The results showed expressions of NLRP3 and the adaptor protein apoptosis-associated speck-like protein (ASC) significantly increased in the outside of intrafollicular fluid, further analysis found that caspase-1 was activated and IL-1β production was also upregulated after 52 h-treatment of PMSG. Furthermore, a significant increase of ovulation-related genes, hypoxia inducible factor (HIF)-1α and endothelin (ET)-1, was found after 52 h-treatment of PMSG. To our knowledge, it is the first time to clearly indicated the activation of NLRP3 inflammasome may contribute to the ovulation of PMSG-treated ovaries, which will help to further clarify the ovulatory mechanism in mammals.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fan Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
8
|
Ennab W, Mustafa S, Wei Q, Lv Z, Kavita NMX, Ullah S, Shi F. Resveratrol Protects against Restraint Stress Effects on Stomach and Spleen in Adult Male Mice. Animals (Basel) 2019; 9:E736. [PMID: 31569722 PMCID: PMC6826970 DOI: 10.3390/ani9100736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2019] [Revised: 09/15/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
The objectives were to investigate whether restraint stress (which is known as a mixture of psychologic and physical stress) exerts negative effects on the stomach and spleen, and whether the phenolic compound resveratrol (RES) exerts any protective roles. Fifty adult male mice were divided into five groups, with 10 mice per group as follows: control (C), restraint stress (RS), RS with vehicle (RS + V), RS with 2 mg/kg of resveratrol (RS + 2 mg RES), and RS with 20 mg/kg of resveratrol (RS + 20 mg RES). Mice were restrained in conical centrifuge tubes for 4 h daily to establish the RS model. RS + 2 mg RES, RS + 20 mg RES, and RS + V groups were given an oral dose of resveratrol or vehicle for 15 consecutive days, while the control group was not exposed to restraint stress. Herein, we showed that restraint stress decreased body weight and food and water consumption in stressed groups RS and RS + V compared to controls, while the groups treated with resveratrol showed improvements. Moreover, restraint stress caused acute damage to the morphology of gastric cells and reduced the quantitative distribution of parietal cells along with their decreased size and diameter, pointing to gastritis or ulcer. Furthermore, the antibody against the apoptosis-inducing factor (AIF) was highly attached in the RS groups. Splenic size, weight, and length were also greatly augmented in the stressed groups compared to the controls, while these phenomena were not observed in the RS + 2 mg RES group. Our findings proved significant ameliorating effects of resveratrol against restraint stress in adult male mice.
Collapse
Affiliation(s)
- Wael Ennab
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sheeraz Mustafa
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ngekure M X Kavita
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Saif Ullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Weng X, Ma X, Wang Q, Xu K, Hu X, Liu W, Zhang C. Effect of hypothyroidism on CYP51 and FSHR expression in rat ovary. Theriogenology 2019; 138:145-151. [PMID: 31352176 DOI: 10.1016/j.theriogenology.2019.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2018] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023]
Abstract
Although thyroid hormone (TH) plays important roles in regulating ovarian development, the mechanism are still unclear. Cytochrome P450 lanosterol 14α-demethylase (CYP51) is a key enzyme in sterols and steroids biosynthesis that involved in folliculogenesis and oocyte maturation, which is regulated by follicle stimulating hormone (FSH). However, the effect of TH on CYP51 expression in ovarian cells is unclear. The objective of this study was to determine the effects of TH on CYP51 in rat ovary. Hypothyroidism rats were induced by 6-propyl-2-thiouracil (PTU), genes expressions in ovary were analyzed by Western blot or qRT-PCR. The data showed that CYP51 was significantly decreased in hypothyroidism, which was accompanied by the down-regulation of mRNA level. Meanwhile, similar tendency was also showed in FSHR expression in hypothyroidism. To evaluate the effect of the gonadotropin on CYP51 and FSHR expression in ovarian cells in vivo, hypo rats were injected subcutaneously with equine chorionic gonadotropin (eCG) respectively. The results showed that eCG reversed CYP51 and FSHR expression in hypo group. Moreover, FSH-induced CYP51 expression was meditated by FSHR. In addition, serum concentration of FSH and E2 were also decreased in hypothyroidism, and E2 was up-regulated by eCG treatment. These results indicate that hypothyroidism changes CYP51 and FSHR expression in ovary, which are regulated by gonadotropin. Moreover, genes changes in ovary are at least partially attributed to steroids biosynthesis.
Collapse
Affiliation(s)
- Xuechun Weng
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoshu Ma
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Qiaozhi Wang
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Kaili Xu
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xusong Hu
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Wenbo Liu
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
10
|
Oxidative Stress Produced by Hyperthyroidism Status Induces the Antioxidant Enzyme Transcription through the Activation of the Nrf-2 Factor in Lymphoid Tissues of Balb/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7471890. [PMID: 31281590 PMCID: PMC6589208 DOI: 10.1155/2019/7471890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Abstract
Hyperthyroidism is an endocrine disorder characterized by excessive secretion of thyroid hormones T3 and T4. Thyroid hormones exert pleiotropic actions on numerous tissues and induce an overall increase in metabolism, with an increase in energy demand and oxygen consumption. Therefore, the purpose of this study was to investigate the effects of hyperthyroidism on the production of reactive oxygen species (ROS) in lymph node and spleen cells of euthyroid and hyperthyroid mice, analyzing antioxidant mechanisms involved in the restitution of the cellular redox state. For this, thirty female Balb/c (H-2d) mice were randomly divided into two groups: euthyroid (by treatment with placebo) and hyperthyroid (by treatment with 12 mg/l of T4 in drinking water for 30 days). We found a significant increase in ROS and an increase in the genomic and protein expression of the antioxidant enzymes catalase (CAT) and glutathione peroxidase-1 (GPx-1) in lymph node and spleen cells of hyperthyroid mice. In vitro treatment with H2O2 (250 μM) of the lymphoid cells of euthyroid mice increased the expression levels of CAT and GPx-1. The hyperthyroidism increased the phosphorylation levels of Nrf2 (nuclear factor erythroid 2-related factor) and the kinase activity of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). Additionally, we found an increase in the expression of the classic isoenzymes of PKCα, β and γ. In conclusion, these results indicated that the increase in ROS found in the hyperthyroid state induces the antioxidant enzyme transcription through the activation of the Nrf-2 factor in lymphoid tissues. This shows the influence of hyperthyroidism on the regulation of the cellular antioxidant system.
Collapse
|
11
|
Song D, Wu G, Wei Q, Shi F. Bisphenol A attenuates thyroxine-induced apoptosis in ovarian granulosa cells of pigs. Reprod Domest Anim 2019; 54:864-872. [PMID: 30972826 DOI: 10.1111/rda.13436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is a chemical of high production volume that is used widely in many industries and is known as a xenooestrogen and anti-thyroid hormone endocrine disrupter. There is little information regarding the effects of BPA in the presence of thyroid hormone on porcine granulosa cell development. Thus, the primary granulosa cells were treated with thyroxine (T4, 10 nM), BPA (10 µM) or T4 plus BPA; we subsequently evaluated the effects of T4 or BPA on 17β-estradiol synthesis, cellular proliferation and apoptosis. Our data showed that BPA significantly increased the accumulation of 17β-estradiol and promoted granulosa cell proliferation, whereas T4 significantly decreased 17β-estradiol and had no effect on cellular proliferation. In addition, it was noteworthy that T4 treatment induced apoptosis in porcine granulosa cells and BPA co-incubation attenuated T4-induced apoptosis as shown from flow cytometric assay analysis. We hypothesized that BPA attenuates T4-induced apoptosis by regulating 17β-estradiol accumulation and oestrogen receptor-mediated signalling pathways. In conclusion, our results demonstrated that T4 affected 17β-estradiol accumulation and induced cellular apoptosis, but did not affect granulosa cell proliferation. Exposure to BPA increased 17β-estradiol accumulation, promoted granulosa cell proliferation and attenuated T4-induced apoptosis in porcine granulosa cells in vitro.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guoyun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Sohel MMH, Akyuz B, Konca Y, Arslan K, Sariozkan S, Cinar MU. Oxidative stress modulates the expression of apoptosis-associated microRNAs in bovine granulosa cells in vitro. Cell Tissue Res 2019; 376:295-308. [PMID: 30666538 DOI: 10.1007/s00441-019-02990-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Despite its essential role in ovulation, oxidative stress (OS) has been found to be cytotoxic to cells, while microRNAs (miRNAs) are known as a major regulator of genes involved in cellular defense against cytotoxicity. However, a functional link between OS and miRNA expression changes in granulosa cells (GCs) remains to be investigated. Here, we investigate the OS modulation of apoptosis-associated miRNAs and their biological relevance in bovine GCs. Following the evaluation of cell viability, accumulation of reactive oxygen species (ROS), cytotoxicity and mitochondrial activity, we used a ready-to-use miRNA PCR array to identify differentially regulated miRNAs. The results showed that exposure to 150 μM H2O2 for 4 h creates remarkable signs of OS in GCs characterized by more than 50% loss of cell viability, higher nuclear factor erythroid 2-related factor 2 (NRF2) nuclear translocation, significantly (p < 0.05) higher abundance of antioxidant genes, significantly (p < 0.001) higher accumulation of ROS, lower mitochondrial activity and a higher (p < 0.001) number of apoptotic nuclei compared to that of the control group. miRNA expression analysis revealed that a total of 69 miRNAs were differentially regulated in which 47 and 22 miRNAs were up- and downregulated, respectively, in stressed GCs. By applying the 2-fold and p < 0.05 criteria, we found 16 miRNAs were upregulated and 10 miRNAs were downregulated. Target prediction revealed that up- and downregulated miRNAs potentially targeted a total of 6210 and 3575 genes, respectively. Pathway analysis showed that upregulated miRNAs are targeting the genes involved mostly in cell survival, intracellular communication and homeostasis, cellular migration and growth control and disease pathways. Our results showed that OS modulates the expression of apoptosis-associated miRNAs that might have effects on cellular or molecular damages.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Genome and Stem Cell Centre, Erciyes University, 38039, Kayseri, Turkey.
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Akyuz
- Department of Genetics, Faculty of Veterinary Science, Erciyes University, 38039, Kayseri, Turkey
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Science, Erciyes University, 38039, Kayseri, Turkey
| | - Serpil Sariozkan
- Department of Fertility and Artificial Insemination, Faculty of Veterinary Science, Erciyes University, 38039, Kayseri, Turkey
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|