1
|
Lee DH, Kim SB. Quorum Quenching Potential of Reyranella sp. Isolated from Riverside Soil and Description of Reyranella humidisoli sp. nov. J Microbiol 2024; 62:449-461. [PMID: 38814538 DOI: 10.1007/s12275-024-00131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/13/2024] [Accepted: 02/27/2024] [Indexed: 05/31/2024]
Abstract
Quorum quenching refers to any mechanism that inhibits quorum sensing processes. In this study, quorum quenching activity among bacteria inhabiting riverside soil was screened, and a novel Gram-stain-negative, rod shaped bacterial strain designated MMS21-HV4-11T, which showed the highest level of quorum quenching activity, was isolated and subjected to further analysis. Strain MMS21-HV4-11T could be assigned to the genus Reyranella of Alphaproteobacteria based on the 16S rRNA gene sequence, as the strain shared 98.74% sequence similarity with Reyranella aquatilis seoho-37T, and then 97.87% and 97.80% sequence similarity with Reyranella soli KIS14-15T and Reyranella massiliensis 521T, respectively. The decomposed N-acyl homoserine lactone was restored at high concentrations under acidic conditions, implying that lactonase and other enzyme(s) are responsible for quorum quenching. The genome analysis indicated that strain MMS21-HV4-11T had two candidate genes for lactonase and one for acylase, and expected protein structures were confirmed. In the quorum sensing inhibition assay using a plant pathogen Pectobacterium carotovorum KACC 14888, development of soft rot was significantly inhibited by strain MMS21-HV4-11T. Besides, the swarming motility by Pseudomonas aeruginosa PA14 was significantly inhibited in the presence of strain MMS21-HV4-11T. Since the isolate did not display direct antibacterial activity against either of these species, the inhibition was certainly due to quorum quenching activity. In an extended study with the type strains of all known species of Reyranella, all strains were capable of degrading N-acyl homoserine lactones (AHLs), thus showing quorum quenching potential at the genus level. This is the first study on the quorum quenching potential and enzymes responsible in Reyranella. In addition, MMS21-HV4-11T could be recognized as a new species through taxonomic characterization, for which the name Reyranella humidisoli sp. nov. is proposed (type strain = MMS21-HV4-11 T = KCTC 82780 T = LMG 32365T).
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
3
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
4
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
5
|
Zhang H, Zhang Z, Li J, Qin G. New Strategies for Biocontrol of Bacterial Toxins and Virulence: Focusing on Quorum-Sensing Interference and Biofilm Inhibition. Toxins (Basel) 2023; 15:570. [PMID: 37755996 PMCID: PMC10536320 DOI: 10.3390/toxins15090570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The overuse of antibiotics and the emergence of multiple-antibiotic-resistant pathogens are becoming a serious threat to health security and the economy. Reducing antimicrobial resistance requires replacing antibiotic consumption with more biocontrol strategies to improve the immunity of animals and humans. Probiotics and medicinal plants have been used as alternative treatments or preventative therapies for a variety of diseases caused by bacterial infections. Therefore, we reviewed some of the anti-virulence and bacterial toxin-inhibiting strategies that are currently being developed; this review covers strategies focused on quenching pathogen quorum sensing (QS) systems, the disruption of biofilm formation and bacterial toxin neutralization. It highlights the probable mechanism of action for probiotics and medicinal plants. Although further research is needed before a definitive statement can be made on the efficacy of any of these interventions, the current literature offers new hope and a new tool in the arsenal in the fight against bacterial virulence factors and bacterial toxins.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China;
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Zhen Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Jing Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China;
| |
Collapse
|
6
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
7
|
Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms 2023; 11:microorganisms11030793. [PMID: 36985366 PMCID: PMC10056907 DOI: 10.3390/microorganisms11030793] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Quorum sensing (QS) is a cell-to-cell communication mechanism that occurs between inter- and intra-bacterial species and is regulated by signaling molecules called autoinducers (AIs). It has been suggested that probiotics can exert a QS inhibitory effect through their metabolites. Purpose: To provide an overview of (1) the anti-QS activity of probiotics and its mechanism against foodborne pathogenic and spoilage bacteria; (2) the potential role of the QS of probiotics in gut health; and (3) the impact of microencapsulation on QS. Results: Lactobacillus species have been extensively studied for their anti-QS activity and have been found to effectively disrupt QS in vitro. However, their effectiveness in a food matrix is yet to be determined as they interfere with the AI receptor or its synthesis. QS plays an important role in both the biofilm formation of probiotics and pathogenic bacteria. Moreover, in vitro and animal studies have shown that QS molecules can modulate cytokine responses and gut dysbiosis and maintain intestinal barrier function. In this scenario, microencapsulation was found to enhance AI activity. However, its impact on the anti-QS activity of probiotics and its underlying mechanism remains unclear. Conclusions: Probiotics are potential candidates to block QS activity in foodborne pathogenic and food spoilage bacteria. Microencapsulation increases QS efficacy. However, more research is still needed for the identification of the QS inhibitory metabolites from probiotics and for the elucidation of the anti-QS mechanism of probiotics (microcapsules and free cells) in food and the human gut.
Collapse
|
8
|
Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience-based knowledge has shown that bacteria can communicate with each other through a cell-density-dependent mechanism called quorum sensing (QS). QS controls specific bacterial phenotypes, such as sporulation, virulence and pathogenesis, the production of degrading enzymes, bioluminescence, swarming motility, and biofilm formation. The expression of these phenotypes in food spoiling and pathogenic bacteria, which may occur in food, can have dramatic consequences on food production, the economy, and health. Due to the many reports showing that the use of conventional methods (i.e., antibiotics and sanitizers) to inhibit bacterial growth leads to the emergence of antibiotic resistance, it is necessary to research and exploit new strategies. Several studies have already demonstrated positive results in this direction by inhibiting autoinducers (low-molecular-weight signaling compounds controlling QS) and by other means, leading to QS inhibition via a mechanism called quorum quenching (QQ). Thus far, several QS inhibitors (QSIs) have been isolated from various sources, such as plants, some animals from aqueous ecosystems, fungi, and bacteria. The present study aims to discuss the involvement of QS in food spoilage and to review the potential role of probiotics as QSIs.
Collapse
|
9
|
Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms 2022; 10:microorganisms10020350. [PMID: 35208805 PMCID: PMC8875677 DOI: 10.3390/microorganisms10020350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
The modern paradigm assumes that interspecies communication of microorganisms occurs through precise regulatory mechanisms. In particular, antagonism between bacteria or bacteria and fungi can be achieved by direct destruction of the targeted cells through the regulated production of antimicrobial metabolites or by controlling their adaptive mechanisms, such as the formation of biofilms. The quorum-quenching phenomenon provides such a countermeasure strategy. This review discusses quorum-sensing suppression by Gram-positive microorganisms, the underlying mechanisms of this process, and its molecular intermediates. The main focus will be on Gram-positive bacteria that have practical applications, such as starter cultures for food fermentation, probiotics, and other microorganisms of biotechnological importance. The possible evolutionary role of quorum-quenching mechanisms during the development of interspecies interactions of bacteria is also considered. In addition, the review provides possible practical applications for these mechanisms, such as the control of pathogens, improving the efficiency of probiotics, and plant protection.
Collapse
|
10
|
Giri R, Sharma RK. Analysis of protein association networks regulating the neuroactive metabolites production in Lactobacillus species. Enzyme Microb Technol 2021; 154:109978. [PMID: 34968825 DOI: 10.1016/j.enzmictec.2021.109978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Human population is intensively suffering from mental disorders and stress. Microbial metabolites may alter the brain activity, which seems to be an effective approach in the treatment of psychological distress. Earlier, microbial neuroactive metabolites such as trimethylamine, imidazolone propionate and taurine have been shown to alter the brain activity. In the present study proteins regulating their production and activity were explored in Lactobacillus species with the help of STRING (11.5) as a bioinformatic tool. Dataset network of urocanate hydratase, glycine radical enzyme and taurine ABC transporter protein (ATP-dependent transporter) have been identified in Lactobacillus nodensis, Lactobacillus vini and Lactobacillus paraplantarum strains. Further, cluster analysis of network resulted with groups of homologous proteins that most likely related to reductive monocarboxylic acid cycle, pyruvate fermentation to acetate IV and L-histidine degradation I pathway. The findings emphasize on the use and evaluation of selected Lactobacillus strains as psychoactive bacteria for the prevention and treatment of certain neurological and neurophysiological conditions.
Collapse
Affiliation(s)
- Rajat Giri
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
11
|
Schlagenhauf U, Jockel-Schneider Y. Probiotics in the Management of Gingivitis and Periodontitis. A Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.708666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the management of intestinal health problems, the targeted use of probiotic microorganisms is a common therapeutic measure with a long-standing tradition. In clinical dentistry however, probiotics-based therapy is still a rather new and developing field, whose usefulness for the control of gingivitis and periodontitis has been questioned by recent meta-analyses and systematic reviews. The purpose of the subsequent descriptive review is to provide an introduction to the concept of probiotic microorganisms and their multifaceted health-promoting interactions with the human host and microbial competitors, followed by a detailed comparison of the results of available controlled clinical trials assessing the use of probiotics in the control of gingival and periodontal inflammations. It aims at contributing to a deeper understanding of the unique capabilities of probiotics to resolve chronic plaque-induced inflammation even in the absence of mechanical plaque control and will discuss how possible misconceptions about the rationale for using probiotics may have led to the present controversies about their usefulness as a therapeutic option.
Collapse
|
12
|
Apiwatsiri P, Pupa P, Yindee J, Niyomtham W, Sirichokchatchawan W, Lugsomya K, Shah AA, Prapasarakul N. Anticonjugation and Antibiofilm Evaluation of Probiotic Strains Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N Against Escherichia coli Harboring mcr-1 Gene. Front Vet Sci 2021; 8:614439. [PMID: 34179153 PMCID: PMC8225926 DOI: 10.3389/fvets.2021.614439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Several species of lactic acid bacteria (LAB) are commonly used as probiotics and as an alternative to antibiotics in various industries, especially in the livestock industry. This study aimed to investigate the anticonjugation and antibiofilm activity of cell-free supernatant (CFS) of Thai LAB strains (Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N) against colistin-resistant Escherichia coli isolates. A total of six colistin-resistant E. coli strains were isolated from different sources, including pigs, farmers, and farmhouse environments. The E. coli were characterized by plasmid profiling, PCR detection of mcr-1 gene, and antibiotic susceptibility patterns. The CFS at dilutions ≥1:16 was chosen as the proper dilution for anticonjugation assay. Besides, it could significantly reduce the transfer frequencies of resistance gene mcr-1 up to 100 times compared to the neutralizing CFS (pH 6.5). The biofilm production in the planktonic stage was reduced by non-neutralizing and neutralizing CFS determining with crystal violet staining assay up to 82 and 60%, respectively. Moreover, the non-neutralizing CFS also inhibited the biofilm formation in the sessile stage up to 52%. The biofilm illustration was confirmed by scanning electron microscopy (SEM). These results agreed with the findings of the crystal violet technique, which showed a significant reduction in cell density, aggregation, and extracellular polysaccharide (EPS) matrix. The application of Thai LAB may serve as an attractive alternative to antibiotics for reducing biofilm formation and limiting the proliferation of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kittitat Lugsomya
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Asad Ali Shah
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Diagnosis and Monitoring of Animal Pathogens Research Unit (DMAP), Bangkok, Thailand
| |
Collapse
|
13
|
Wu L, Luo Y. Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Front Microbiol 2021; 12:611413. [PMID: 33584614 PMCID: PMC7876071 DOI: 10.3389/fmicb.2021.611413] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Quorum-sensing (QS) system is a rapidly developing field in which we are gradually expanding our understanding about how bacteria communicate with each other and regulate their activities in bacterial sociality. In addition to collectively modifying bacterial behavior, QS-related autoinducers may also be embedded in the crosstalk between host and parasitic microbes. In this review, we summarize current studies on QS in the intestinal microbiome field and its potential role in maintaining homeostasis under physiological conditions. Additionally, we outline the canonical autoinducers and their related QS signal-response systems by which several pathogens interact with the host under pathological conditions, with the goal of better understanding intestinal bacterial sociality and facilitating novel antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Liang Wu
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Xu B, Fu J, Zhu L, Li Z, Jin M, Wang Y. Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses. J Anim Sci Biotechnol 2021; 12:3. [PMID: 33413687 PMCID: PMC7792336 DOI: 10.1186/s40104-020-00534-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Background Antibiotic growth promoters are widely used to improve weight gain. However, the abuse of antibiotics can have many negative effects on people. Developing alternatives to antibiotics is an urgent need in livestock production. We aimed to perform a meta-analysis and network meta-analysis (NMA) to investigate the effects of feed additives as potential antibiotic substitutes (ASs) on bacteriostasis, growth performance, intestinal morphology and immunity. Furthermore, the primary, secondary, and tertiary ASs were defined by comparing their results with the results of antibiotics. Results Among 16,309 identified studies, 37 were summarized to study the bacteriostasis effects of feed additives, and 89 were included in the meta-analysis and NMA (10,228 pigs). We summarized 268 associations of 57 interventions with 32 bacteria. The order of bacteriostasis effects was as follows: antimicrobial peptides (AMPs) ≈ antibiotics>organic acids>plant extracts>oligosaccharides. We detected associations of 11 feed additives and 11 outcomes. Compared with a basal diet, plant extract, AMPs, probiotics, microelements, organic acids, bacteriophages, lysozyme, zymin, and oligosaccharides significantly improved growth performance (P < 0.05); organic acids, probiotics, microelements, lysozyme, and AMPs remarkably increased the villus height:crypt depth ratio (V/C) (P < 0.05); and plant extracts, zymin, microelements, probiotics, and organic acids notably improved immunity (P < 0.05). The optimal AMP, bacteriophage, lysozyme, microelements, oligosaccharides, organic acids, plants, plant extracts, probiotics, and zymin doses were 0.100%, 0.150%, 0.012%, 0.010%, 0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%, respectively. Compared with antibiotics, all investigated feed additives exhibited no significant difference in effects on growth performance, IgG, and diarrhoea index/rate (P > 0.05); AMPs and microelements significantly increased V/C (P < 0.05); and zymin significantly improved lymphocyte levels (P < 0.05). Furthermore, linear weighting sum models were used to comprehensively estimate the overall impact of each feed additive on pig growth and health. Conclusions Our findings suggest that AMPs and plant extracts can be used as primary ASs for weaned piglets and growing pigs, respectively. Bacteriophages, zymin, plants, probiotics, oligosaccharides, lysozyme, and microelements can be regarded as secondary ASs. Nucleotides and organic acids can be considered as tertiary ASs. Future studies should further assess the alternative effects of combinational feed additives.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Jie Fu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Luoyi Zhu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| |
Collapse
|
15
|
Effects of Natural Products on Bacterial Communication and Network-Quorum Sensing. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8638103. [PMID: 32596389 PMCID: PMC7273434 DOI: 10.1155/2020/8638103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Quorum sensing (QS) has emerged as a research hotspot in microbiology and medicine. QS is a regulatory cell communication system used by bacterial flora to signal to the external environment. QS influences bacterial growth, proliferation, biofilm formation, virulence factor production, antibiotic synthesis, and environmental adaptation. Through the QS system, natural products can regulate the growth of harmful bacteria and enhance the growth of beneficial bacteria, thereby improving human health. Herein, we review advances in the discovery of natural products that regulate bacterial QS systems.
Collapse
|
16
|
Braundmeier-Fleming AG, Skenandore CS, Gil L, Jacobsen V, Cregger M, Badger T, Karr M, Wu G, Smith SB, Newell-Fugate AE. Dietary substitution of soybean oil with coconut oil in the absence of dietary antibiotics supports growth performance and immune function in nursery and grower pigs. J Anim Sci Biotechnol 2020; 11:27. [PMID: 32190298 PMCID: PMC7075000 DOI: 10.1186/s40104-020-0428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background We hypothesized that supplementation of nursery and grower pig diets with coconut oil in the absence of antibiotics would yield maintenance of glucose homeostasis, growth performance, and immune function similar to what is achieved with nursery and grower pig diets containing antibiotics. Pigs received the same base treatment diets from d24 (weaning) to d71 of age and had blood and fecal samples collected on d24, d31, d45 and d71 for measurement of whole blood glucose, serum insulin, cortisol and cytokines, and fecal microbiome. Pigs had weekly weights and daily feed consumption measured throughout the study. Animals were euthanized at d71 and subcutaneous fat and ileal contents were collected for assessment for fatty acids and microbiome, respectively. Diet treatments consisted of 2% soybean oil plus antibiotics (ABX; n = 22), 2% soybean oil without antibiotics (NABX; n = 22), and 2% coconut oil without antibiotics (COC; n = 22). Statistical analysis examined the effect of diet within each timepoint using a repeated measures ANOVA. Results Pigs fed COC diet had decreased serum insulin levels, maintained feed intake, feed conversion and weight gain, and, based on serum cytokines and fecal microbiome, were immunologically similar to ABX-fed pigs. However, NABX-fed pigs performed similarly to the ABX-fed pigs in all parameters except for serum cytokines. Additionally, there was no difference in the incidence of diarrhea between any of the diet treatments. Conclusions This study demonstrates that dietary antibiotics are not necessary to maintain growth performance in nursery and grower pigs. However, dietary antibiotics appear to modulate circulating cytokine levels. Dietary coconut oil is neither harmful nor helpful to growth performance or immune function in nursery and grower pigs but does modulate serum insulin levels. Therefore, while coconut oil fed at 2% by weight is a suitable substitute for dietary antibiotics, this study suggests that no substitute for dietary antibiotics is needed at all.
Collapse
Affiliation(s)
- Andrea G Braundmeier-Fleming
- 1Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702 USA
| | - Cassandra S Skenandore
- 2Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843 USA
| | - Lesly Gil
- 2Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843 USA
| | - Victoria Jacobsen
- 2Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843 USA
| | - Melissa Cregger
- 1Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702 USA
| | - Taylor Badger
- 1Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702 USA
| | - Mallory Karr
- 1Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702 USA
| | - Guoyao Wu
- 3Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843 USA
| | - Stephen B Smith
- 3Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843 USA
| | - Annie E Newell-Fugate
- 2Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843 USA
| |
Collapse
|
17
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
18
|
Kumar A, Ellermann M, Sperandio V. Taming the Beast: Interplay between Gut Small Molecules and Enteric Pathogens. Infect Immun 2019; 87:e00131-19. [PMID: 31262983 PMCID: PMC6704596 DOI: 10.1128/iai.00131-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The overuse of antibiotics has led to the evolution of drug-resistant bacteria that are becoming increasingly dangerous to human health. According to the Centers for Disease Control and Prevention, antibiotic-resistant bacteria cause at least 2 million illnesses and 23,000 deaths in the United States annually. Traditionally, antibiotics are bactericidal or bacteriostatic agents that place selective pressure on bacteria, leading to the expansion of antibiotic-resistant strains. In addition, antibiotics that are effective against some pathogens can also exacerbate their pathogenesis and may lead to severe progression of the disease. Therefore, alternative strategies are needed to treat antibiotic-resistant bacterial infections. One novel approach is to target bacterial virulence to prevent or limit pathogen colonization, while also minimizing tissue damage and disease comorbidities in the host. This review focuses on the interactions between enteric pathogens and naturally occurring small molecules in the human gut as potential therapeutic targets for antivirulence strategies. Individual small molecules in the intestines modulate enteric pathogen virulence and subsequent intestinal fitness and colonization. Targeted interruption of pathogen sensing of these small molecules could therefore attenuate their virulence. This review highlights the paths of discovery for new classes of antimicrobials that could potentially mitigate the urgent problem of antibiotic resistance.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa Ellermann
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Gao P, Guo Y, Zhang N, Zhang W, Wang H, Guo X, Duan Z, Du M, Yang Q, Li B, Li Y, Cao G. Characterization and comparisons of microbiota in different intestinal segments between adult Chinese Shanxi Black Pigs and Large White Pigs. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1430-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
20
|
Gao P, Liu Y, Le B, Qin B, Liu M, Zhao Y, Guo X, Cao G, Liu J, Li B, Duan Z. A comparison of dynamic distributions of intestinal microbiota between Large White and Chinese Shanxi Black pigs. Arch Microbiol 2019; 201:357-367. [DOI: 10.1007/s00203-019-01620-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/25/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022]
|