1
|
Gunes ME, Wolbrom DH, Nygaard ED, Manell E, Jordache P, Qudus S, Cadelina A, Weiner J, Nowak G. OMIP-108: 22-color flow cytometry panel for detection and monitoring of chimerism and immune reconstitution in porcine-to-baboon models of operational xenotransplant tolerance studies. Cytometry A 2024. [PMID: 39291632 DOI: 10.1002/cyto.a.24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Affiliation(s)
- M Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Daniel H Wolbrom
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Emilie Ditlev Nygaard
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Susan Qudus
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Alexander Cadelina
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
- Department of Surgery, Columbia University, New York, New York, USA
| | - Greg Nowak
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, New York, USA
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Han P, Zhang W, Wang D, Wu Y, Li X, Zhao S, Zhu M. Comparative transcriptome analysis of T lymphocyte subpopulations and identification of critical regulators defining porcine thymocyte identity. Front Immunol 2024; 15:1339787. [PMID: 38384475 PMCID: PMC10879363 DOI: 10.3389/fimmu.2024.1339787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The development and migration of T cells in the thymus and peripheral tissues are crucial for maintaining adaptive immunity in mammals. However, the regulatory mechanisms underlying T cell development and thymocyte identity formation in pigs remain largely underexplored. Method Here, by integrating bulk and single-cell RNA-sequencing data, we investigated regulatory signatures of porcine thymus and lymph node T cells. Results The comparison of T cell subpopulations derived from porcine thymus and lymph nodes revealed that their transcriptomic differences were influenced more by tissue origin than by T cell phenotypes, and that lymph node cells exhibited greater transcriptional diversity than thymocytes. Through weighted gene co-expression network analysis (WGCNA), we identified the key modules and candidate hub genes regulating the heterogeneity of T cell subpopulations. Further, we integrated the porcine thymocyte dataset with peripheral blood mononuclear cell (PBMC) dataset to systematically compare transcriptomic differences between T cell types from different tissues. Based on single-cell datasets, we further identified the key transcription factors (TFs) responsible for maintaining porcine thymocyte identity and unveiled that these TFs coordinately regulated the entire T cell development process. Finally, we performed GWAS of cell type-specific differentially expressed genes (DEGs) and 30 complex traits, and found that the DEGs in thymus-related and peripheral blood-related cell types, especially CD4_SP cluster and CD8-related cluster, were significantly associated with pig productive and reproductive traits. Discussion Our findings provide an insight into T cell development and lay a foundation for further exploring the porcine immune system and genetic mechanisms underlying complex traits in pigs.
Collapse
Affiliation(s)
- Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Zhang Z, Wang D, Yao Y, Yang J, Yang Z, Yang Y. Characterization of T-cell subsets in response to foot-and-mouth disease bivalent inactivated vaccine in Chinese Holstein cows. Microbiol Spectr 2023; 11:e0102923. [PMID: 37815383 PMCID: PMC10714733 DOI: 10.1128/spectrum.01029-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/30/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Vaccination plays a crucial role in the prevention and control of FMD; however, outbreaks persist occurring worldwide. Assessing the immune response to FMD vaccines is essential for effective prevention of FMD. In this study, a seven-color flow cytometry protocol was developed to systematically evaluate the T-cell response of Chinese Holstein cows vaccinated with FMD bivalent inactivated vaccine. Our findings showed that while most T-cell subsets (%) decreased post-vaccination, a significant increase was observed in CD4+CD8+ DP T cells, which was consistent with the levels of specific foot-and-mouth disease virus (FMDV) antibodies. These findings suggested that CD4+CD8+ DP T cells could serve as a potential biomarker for the evaluation of cellular and humoral responses to FMDV vaccination. Additionally, we should be aware of the potential decline in cellular immunity among cattle during FMD vaccination, as this may increase the risk of other pathogen-related issues.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dasheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiayu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Miguelena Chamorro B, Hameed SA, Dechelette M, Claude JB, Piney L, Chapat L, Swaminathan G, Poulet H, Longet S, De Luca K, Mundt E, Paul S. Characterization of Canine Peyer's Patches by Multidimensional Analysis: Insights from Immunofluorescence, Flow Cytometry, and Single-Cell RNA Sequencing. Immunohorizons 2023; 7:788-805. [PMID: 38015460 PMCID: PMC10696420 DOI: 10.4049/immunohorizons.2300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
The oral route is effective and convenient for vaccine administration to stimulate a protective immune response. GALT plays a crucial role in mucosal immune responses, with Peyer's patches (PPs) serving as the primary site of induction. A comprehensive understanding of the structures and functions of these structures is crucial for enhancing vaccination strategies and comprehending disease mechanisms; nonetheless, our current knowledge of these structures in dogs remains incomplete. We performed immunofluorescence and flow cytometry studies on canine PPs to identify cell populations and structures. We also performed single-cell RNA sequencing (scRNA-seq) to investigate the immune cell subpopulations present in PPs at steady state in dogs. We generated and validated an Ab specifically targeting canine M cells, which will be a valuable tool for elucidating Ag trafficking into the GALT of dogs. Our findings will pave the way for future studies of canine mucosal immune responses to oral vaccination and enteropathies. Moreover, they add to the growing body of knowledge in canine immunology, further expanding our understanding of the complex immune system of dogs.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | | | | | | | - Lauriane Piney
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Ludivine Chapat
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | | | - Hervé Poulet
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Stéphanie Longet
- Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
| | - Karelle De Luca
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Egbert Mundt
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
- International Center for Infectiology Research, INSERM 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
5
|
Comprehensive Transcriptomic Comparison between Porcine CD8 - and CD8 + Gamma Delta T Cells Revealed Distinct Immune Phenotype. Animals (Basel) 2021; 11:ani11082165. [PMID: 34438623 PMCID: PMC8388496 DOI: 10.3390/ani11082165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study was conducted to comprehensively understand the functional mechanisms of CD8+/− porcine gamma delta (γδ) T cells related to the immune system using RNA-sequencing technology. In total, 646 upregulated and 561 downregulated differentially expressed genes (DEGs) for CD8+ were identified and functional annotation was performed. A cytokine–cytokine receptor interaction and T cell receptor (TCR) signaling pathway were enriched in the upregulated DEG group, whereas the B cell receptor signaling pathway was enriched in the downregulated DEG group. Chemokine-related genes (CXCR3, CCR5, CCL4, CCL5), interferon gamma (IFNG), and CD40 ligand (CD40LG) identified in the cytokine–cytokine receptor interaction and TCR signaling pathway may affect the inter-regulation of immune signaling. Our results are expected to contribute to the understanding of mechanisms of porcine γδ T cells. Abstract We aimed to comprehensively understand the functional mechanisms of immunity, especially of the CD8+/− subsets of gamma delta (γδ) T cells, using an RNA-sequencing analysis. Herein, γδ T cells were obtained from bronchial lymph node tissues of 38-day-old (after weaning 10-day: D10) and 56-day-old (after weaning 28-day: D28) weaned pigs and sorted into CD8+ and CD8− groups. Differentially expressed genes (DEGs) were identified based on the CD8 groups at D10 and D28 time points. We confirmed 1699 DEGs between D10 CD8+ versus D10 CD8− groups and 1784 DEGs between D28 CD8+ versus D28 CD8− groups; 646 upregulated and 561 downregulated DEGs were common. The common upregulated DEGs were enriched in the cytokine–cytokine receptor interaction and T cell receptor (TCR) signaling pathway, and the common downregulated DEGs were enriched in the B cell receptor signaling pathway. Further, chemokine-related genes, interferon gamma, and CD40 ligand were involved in the cytokine–cytokine receptor interaction and TCR signaling pathway, which are associated with inter-regulation in immunity. We expect our results to form the basic data required for understanding the mechanisms of γδ T cells in pigs; however, further studies are required in order to reveal the dynamic changes in γδ T cells under pathogenic infections, such as those by viruses.
Collapse
|
6
|
Forner R, Bombassaro G, Bellaver FV, Maciag S, Fonseca FN, Gava D, Lopes L, Marques MG, Bastos AP. Distribution difference of colostrum-derived B and T cells subsets in gilts and sows. PLoS One 2021; 16:e0249366. [PMID: 33939699 PMCID: PMC8092660 DOI: 10.1371/journal.pone.0249366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
Piglets are highly vulnerable to infections, but colostrum provides them with some protection. The function of colostrum components is unknown, as is if the amount and subsets of leukocytes in colostrum differ between gilts and sows. This study serially characterized leukocyte populations in colostrum for differential leukocyte counts. Differences in humoral and cellular composition of colostrum between 40 gilts and 40 sows (parities orders 3-4) from a commercial herd were examined. Flow cytometry is a useful tool to identify and quantify leukocyte subsets in sow colostrum. Overall, there were no (p ≥ 0.05) parity differences in total macrophages, granulocytes, and T and B cells. However, the sows' colostrum presented significantly higher (p ≤ 0.05) T lymphocyte subsets than gilts, such as central memory CD4+T cells, effector memory CD4+T cells, and central memory CD8+T cells. Among B-lymphocytes, percentages of SWC7+CD5+ cells were significantly higher in sow colostrum than in that of gilts. As expected, IgG concentrations were significantly higher in sows than in gilts. Colostrum from sows had significantly greater mitogenic activity than colostrum from gilts and this fact can be associated with the potential to accelerate the maturation of a newborn's gastrointestinal tract. Our findings suggest that parity order may be one among other factors influencing the cell population and, consequently, the immune adaptive response in piglets that induces neutralizing antibodies and cellular immune responses to antigens.
Collapse
Affiliation(s)
- Ricardo Forner
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Shaiana Maciag
- Universidade Estadual do Centro-Oeste do Paraná- campus CEDETEG, Guarapuava, PR, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
McLendon BA, Seo H, Kramer AC, Burghardt RC, Bazer FW, Johnson GA. Pig conceptuses secrete interferon gamma to recruit T cells to the endometrium during the peri-implantation period†. Biol Reprod 2020; 103:1018-1029. [PMID: 32716497 DOI: 10.1093/biolre/ioaa132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
The emerging paradigm in the immunology of pregnancy is that implantation of conceptuses does not progress in an immunologically suppressed environment. Rather, the endometrium undergoes a controlled inflammatory response during implantation as trophectoderm of elongating and implanting pig conceptuses secrete the pro-inflammatory cytokine interferon gamma (IFNG). Results of this study with pigs revealed: (1) accumulation of immune cells and apoptosis of stromal cells within the endometrium at sites of implantation during the period of IFNG secretion by conceptuses; (2) accumulation of proliferating cell nuclear antigen (PCNA)-positive T cells within the endometrium at sites of implantation; (3) significant increases in expression of T cell co-signaling receptors including programmed cell death 1 (PDCD1), CD28, cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and inducible T cell co-stimulator (ICOS), as well as chemokines CXCL9, 10, and 11 within the endometrium at sites of implantation; (4) significant increases in T cell co-signaling receptors, PDCD1 and ICOS, and chemokine CXCL9 in the endometrium of cyclic gilts infused with IFNG; and (5) identification of CD4+ (22.59%) as the major T cell subpopulation, with minor subpopulations of CD8+ (1.38%), CD4+CD25+ (1.08%), and CD4+CD8+ (0.61%) T cells within the endometrium at sites of implantation. Our results provide new insights into the immunology of implantation to suggest that trophectoderm cells of pigs secrete IFNG to recruit various subpopulations of T cells to the endometrium to contribute to a controlled inflammatory environment that supports the active breakdown and restructuring of the endometrium in response to implantation of the conceptus.
Collapse
Affiliation(s)
- Bryan A McLendon
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| |
Collapse
|
8
|
Hühr J, Schäfer A, Schwaiger T, Zani L, Sehl J, Mettenleiter TC, Blome S, Blohm U. Impaired T-cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transbound Emerg Dis 2020; 67:3016-3032. [PMID: 32530090 DOI: 10.1111/tbed.13678] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Since African swine fever (ASF) first appeared in the Caucasus region in 2007, it has spread rapidly and is now present in numerous European and Asian countries. In Europe, mainly wild boar populations are affected and pose a risk for domestic pigs. In Asia, domestic pigs are almost exclusively affected. An effective and safe vaccine is not available, and correlates of protection are far from being understood. Therefore, research on immune responses, immune dysfunction and pathogenesis is mandatory. It is acknowledged that T cells play a pivotal role. Thus, we investigated T-cell responses of domestic pigs and wild boar upon infection with the highly virulent ASF virus (ASFV) strain 'Armenia08'. For this purpose, we used a flow cytometry-based multicolour analysis to identify T-cell subtypes (cytotoxic T cells, T-helper cells, γδ T cells) and their functional impairment in ASFV-infected pigs. Domestic pigs showed lymphopaenia, and neither in the blood nor in the lymphoid organs was a proliferation of CD8+ effector cells observed. Furthermore, a T-bet-dependent activation of the remaining CD8 T cells did not occur. In contrast, a T-cell response could be observed in wild boar at 5 days post-inoculation in the blood and in tendency also in some organs. However, this cytotoxic response was not beneficial as all wild boars showed a severe acute lethal disease and a higher proportion died spontaneously or was euthanized at the humane endpoint.
Collapse
Affiliation(s)
- Jane Hühr
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | - Laura Zani
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Julia Sehl
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
9
|
Xu R, Wan J, Lin C, Su Y. Effects of Early Intervention with Antibiotics and Maternal Fecal Microbiota on Transcriptomic Profiling Ileal Mucusa in Neonatal Pigs. Antibiotics (Basel) 2020; 9:E35. [PMID: 31963653 PMCID: PMC7168243 DOI: 10.3390/antibiotics9010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
This study aimed to investigate the effects of early intervention with antibiotics and maternal fecal microbiota on ileal morphology and barrier function, and transcriptomic profiling in neonatal piglets. Piglets in the amoxicillin (AM), fecal microbiota transplantation (FMT), and control (CO) groups were orally administrated with amoxicillin solution (6.94 mg/mL), maternal fecal microbiota suspension [>109 colony forming unit (CFU)/mL], and physiological saline, respectively. Compared with the CO group, early intervention with AM or FMT significantly decreased ileal crypt depth on day 7 and altered gene expression profiles in ileum on days 7 and 21, and especially promoted the expression of chemokines (CCL5, CXCL9, and CXCL11) involved in the toll-like receptor signaling pathway on day 21. FMT changed major immune activities from B cell immunity on day 7 to T cell immunity on day 21 in the ileum. On the other hand, both AM and FMT predominantly downregulated the gene expression of toll-like receptor 4 (TLR4). In summary, both early interventions modulated intestinal barrier function and immune system in the ileum with a low impact on ileal morphology and development.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Wan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhui Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
DNA vaccine based on conserved HA-peptides induces strong immune response and rapidly clears influenza virus infection from vaccinated pigs. PLoS One 2019; 14:e0222201. [PMID: 31553755 PMCID: PMC6760788 DOI: 10.1371/journal.pone.0222201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023] Open
Abstract
Swine influenza virus (SIVs) infections cause a significant economic impact to the pork industry. Moreover, pigs may act as mixing vessel favoring genome reassortment of diverse influenza viruses. Such an example is the pandemic H1N1 (pH1N1) virus that appeared in 2009, harboring a combination of gene segments from avian, pig and human lineages, which rapidly reached pandemic proportions. In order to confront and prevent these possible emergences as well as antigenic drift phenomena, vaccination remains of vital importance. The present work aimed to evaluate a new DNA influenza vaccine based on distinct conserved HA-peptides fused with flagellin and applied together with Diluvac Forte as adjuvant using a needle-free device (IntraDermal Application of Liquids, IDAL®). Two experimental pig studies were performed to test DNA-vaccine efficacy against SIVs in pigs. In the first experiment, SIV-seronegative pigs were vaccinated with VC4-flagellin DNA and intranasally challenged with a pH1N1. In the second study, VC4-flagellin DNA vaccine was employed in SIV-seropositive animals and challenged intranasally with an H3N2 SIV-isolate. Both experiments demonstrated a reduction in the viral shedding after challenge, suggesting vaccine efficacy against both the H1 and H3 influenza virus subtypes. In addition, the results proved that maternally derived antibodies (MDA) did not constitute an obstacle to the vaccine approach used. Moreover, elevated titers in antibodies both against H1 and H3 proteins in serum and in bronchoalveolar lavage fluids (BALFs) was detected in the vaccinated animals along with a markedly increased mucosal IgA response. Additionally, vaccinated animals developed stronger neutralizing antibodies in BALFs and higher inhibiting hemagglutination titers in sera against both the pH1N1 and H3N2 influenza viruses compared to unvaccinated, challenged-pigs. It is proposed that the described DNA-vaccine formulation could potentially be used as a multivalent vaccine against SIV infections.
Collapse
|
11
|
Rahman M, Devriendt B, Gisbert Algaba I, Verhaegen B, Dorny P, Dierick K, Cox E. QuilA-Adjuvanted T. gondii Lysate Antigens Trigger Robust Antibody and IFNγ + T Cell Responses in Pigs Leading to Reduction in Parasite DNA in Tissues Upon Challenge Infection. Front Immunol 2019; 10:2223. [PMID: 31620134 PMCID: PMC6763570 DOI: 10.3389/fimmu.2019.02223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite of all mammals and birds, responsible for toxoplasmosis. In healthy individuals T. gondii infections mostly remain asymptomatic, however this parasite causes severe morbidity and mortality in immunocompromised patients and congenital toxoplasmosis in pregnant women. The consumption of raw or undercooked pork is considered as an important risk factor to develop toxoplasmosis in humans. Since effective therapeutic interventions to treat toxoplasmosis are scarce, vaccination of meat producing animals may prevent T. gondii transmission to humans. Here, we evaluated the elicited immune responses and the efficacy of a potential vaccine candidate, generated by size fractionation of T. gondii lysate proteins, to reduce the parasite burden in tissues from experimentally T. gondii infected pigs as compared to vaccination with total lysate antigens (TLA). Our results show that both the vaccine candidate and the TLA immunization elicited strong serum IgG responses and elevated percentages of CD4+CD8+IFNγ+ T cells in T. gondii infected pigs. However, the TLA vaccine induced the strongest immune response and reduced the parasite DNA load below the detection limit in brain and skeletal muscle tissue in most animals. These findings might inform the development of novel vaccines to prevent T. gondii infections in livestock species and humans.
Collapse
Affiliation(s)
- Mizanur Rahman
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ignacio Gisbert Algaba
- Sciensano, National Reference Center for Toxoplasmosis, Scientific Institute of Public Health, Communicable and Infectious Diseases, Brussels, Belgium
| | - Bavo Verhaegen
- Sciensano, National Reference Center for Toxoplasmosis, Scientific Institute of Public Health, Communicable and Infectious Diseases, Brussels, Belgium
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katelijne Dierick
- Sciensano, National Reference Center for Toxoplasmosis, Scientific Institute of Public Health, Communicable and Infectious Diseases, Brussels, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Maina E, Devriendt B, Cox E. Food allergen-specific sublingual immunotherapy modulates peripheral T cell responses of dogs with adverse food reactions. Vet Immunol Immunopathol 2019; 212:38-42. [PMID: 31213250 DOI: 10.1016/j.vetimm.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022]
Abstract
Food allergen-specific sublingual immunotherapy (FA-SLIT) is a novel, safe and effective approach in dogs with adverse food reactions (AFR) to reduce their clinical symptoms. However, little is known about the specific immune components which mediate this reduction in clinical symptoms. In humans, regulatory T cells seem to play an important role in this desensitisation process. Here, we investigated changes in peripheral T cell responses of dogs with AFR upon FA-SLIT. Five dogs received a dose escalation of FA-SLIT over a six-month period. An oral food challenge was performed at the beginning and end of the study to assess the efficacy of the FA-SLIT. Using in vitro allergen-recall assays, we assessed the proliferation of T cell subsets before and at the end of the treatment. FA-SLIT significantly increased the percentage of proliferating CD4-CD8- double-negative (DN) T cells, while the percentage of allergen-specific CD4-CD8+ and CD4+CD8+ double-positive (DP) T cells decreased upon treatment. These findings indicate that sublingual immunotherapy in dogs activates DN T cells, which might be important for the desensitisation of dogs with adverse food reactions. However, further research is needed to corroborate these findings and to further elucidate the mechanism of action of FA-SLIT in dogs with AFR.
Collapse
Affiliation(s)
- Elisa Maina
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium.
| |
Collapse
|