1
|
Zhang D, Fang X, Xia W, Sun Q, Zhang X, Qi Y, Yu Y, Zhou Z, Du D, Tao C, Wang Z, Li J. Rutin enhances mitochondrial function and improves the developmental potential of vitrified ovine GV-stage oocyte. Theriogenology 2024; 229:214-224. [PMID: 39217650 DOI: 10.1016/j.theriogenology.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Vitrification of oocyte has become an important component of assisted reproductive technology and has important implications for animal reproduction and the preservation of biodiversity. However, vitrification adversely affects mitochondrial function and oocyte developmental potential, mainly because of oxidative damage. Rutin is a highly effective antioxidant, but no information is available to the effect of rutin on the mitochondrial function and development in vitrified oocytes. Therefore, we studied the effects of rutin supplementation of vitrification solution on mitochondrial function and developmental competence of ovine germinal vesicle (GV) stage oocytes post vitrification. The results showed that supplementation of vitrification solution with 0.6 mM rutin significantly increased the cleavage rate (71.6 % vs. 59.3 %) and blastocyst rate (18.9 % vs. 6.8 %) compared to GV-stage oocytes in the vitrified group. Then, we analyzed the reactive oxygen species (ROS), glutathione (GSH), mitochondrial activity and membrane potential (ΔΨm), endoplasmic reticulum (ER) Ca2+, and annexin V (AV) of vitrified sheep GV-stage oocytes. Vitrified sheep oocytes exhibited increased levels of ROS and Ca2+, higher rate of AV-positive oocytes, and decreased mitochondrial activity, GSH and ΔΨm levels. However, rutin supplementation in vitrification solution decreased the levels of ROS, Ca2+ and AV-positive oocytes rate, and increased the GSH and ΔΨm levels in vitrified oocytes. Results revealed that rutin restored mitochondrial function, regulated Ca2+ homeostasis and decreased apoptosis potentially caused by mitophagy in oocytes. To understand the mechanism of rutin functions in vitrified GV-stage oocytes in sheep, we analyzed the transcriptome and found that rutin mediated oocytes development and mitochondrial function, mainly by affecting oxidative phosphorylation and the mitophagy pathways. In conclusion, supplementing with 0.6 mM rutin in vitrification solution significantly enhanced developmental potential through improving mitochondrial function and decreased apoptosis potentially caused by mitophagy after vitrification of ovine GV-stage oocytes.
Collapse
Affiliation(s)
- Di Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Qingyi Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Xinbo Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yatian Qi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yang Yu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhenmin Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Dongyan Du
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China.
| |
Collapse
|
2
|
Tatone C, Di Emidio G, Battaglia R, Di Pietro C. Building a Human Ovarian Antioxidant ceRNA Network "OvAnOx": A Bioinformatic Perspective for Research on Redox-Related Ovarian Functions and Dysfunctions. Antioxidants (Basel) 2024; 13:1101. [PMID: 39334761 PMCID: PMC11428640 DOI: 10.3390/antiox13091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The ovary is a major determinant of female reproductive health. Ovarian functions are mainly related to the primordial follicle pool, which is gradually lost with aging. Ovarian aging and reproductive dysfunctions share oxidative stress as a common underlying mechanism. ROS signaling is essential for normal ovarian processes, yet it can contribute to various ovarian disorders when disrupted. Therefore, balance in the redox system is crucial for proper ovarian functions. In the present study, by focusing on mRNAs and ncRNAs described in the ovary and taking into account only validated ncRNA interactions, we built an ovarian antioxidant ceRNA network, named OvAnOx ceRNA, composed of 5 mRNAs (SOD1, SOD2, CAT, PRDX3, GR), 10 miRNAs and 5 lncRNAs (XIST, FGD5-AS1, MALAT1, NEAT1, SNHG1). Our bioinformatic analysis indicated that the components of OvAnOx ceRNA not only contribute to antioxidant defense but are also involved in other ovarian functions. Indeed, antioxidant enzymes encoded by mRNAs of OvAnOx ceRNA operate within a regulatory network that impacts ovarian reserve, follicular dynamics, and oocyte maturation in normal and pathological conditions. The OvAnOx ceRNA network represents a promising tool to unravel the complex dialog between redox potential and ovarian signaling pathways involved in reproductive health, aging, and diseases.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.T.); (G.D.E.)
| | - Giovanna Di Emidio
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.T.); (G.D.E.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy;
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
3
|
Zhong S, Pan L, Wang Z, Zeng Z. Revealing Changes in Ovarian and Hemolymphatic Metabolites Using Widely Targeted Metabolomics between Newly Emerged and Laying Queens of Honeybee ( Apis mellifera). INSECTS 2024; 15:263. [PMID: 38667393 PMCID: PMC11050517 DOI: 10.3390/insects15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The queen bee is a central and pivotal figure within the colony, serving as the sole fertile female responsible for its reproduction. The queen possesses an open circulatory system, with her ovaries immersed in hemolymph. A continuous and intricate transportation and interchange of substances exist between the ovaries and hemolymph of queen bees. To determine the characteristic metabolites in the hemolymph and ovary, as well as understand how their rapid metabolism contributes to the process of egg-laying by queens, we reared Apis mellifera queens from three different age groups: newly emerged queen (NEQ), newly laying queen (NLQ), and old laying queen (OLQ). Using widely targeted metabolomics, our study revealed that the laying queen (NLQ and OLQ) exhibited faster fatty acid metabolism, up-regulated expression of antioxidants, and significant depletion of amino acids compared to the NEQ. This study revealed that the levels of carnitine and antioxidants (GSH, 2-O-α-D-glucopyranosyl-L-ascorbic acid, L-ascorbic acid 2-phosphate, etc.) in the NLQ and OLQ were significantly higher compared to NEQ. However, most of the differentially expressed amino acids, such as L-tryptophan, L-tyrosine, L-aspartic acid, etc., detected in NLQ and OLQ were down-regulated compared to the NEQ. Following egg-laying, pathways in the queens change significantly, e.g., Tryptophan metabolism, Tyrosine metabolism, cAMP signaling pathway, etc. Our results suggest that carnitine and antioxidants work together to maintain the redox balance of the queen. Additionally, various amino acids are responsible for maintaining the queen's egg production.
Collapse
Affiliation(s)
- Shiqing Zhong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Luxia Pan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
4
|
Geng Z, Jin Y, Quan F, Huang S, Shi S, Hu B, Chi Z, Kong I, Zhang M, Yu X. Methoxychlor induces oxidative stress and impairs early embryonic development in pigs. Front Cell Dev Biol 2023; 11:1325406. [PMID: 38107075 PMCID: PMC10722284 DOI: 10.3389/fcell.2023.1325406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction: Methoxychlor (MXC) is an organochlorine pesticide (OCP) that was formerly used worldwide as an insecticide against pests and mosquitoes. However, MXC is not biodegradable and has lipophilic characteristics; thus, it accumulates in organisms and affects reproductive function. MXC, as an estrogenic compound, promotes oxidative stress, induces oxidative stress damage to ovarian follicles, and causes miscarriages and stillbirths in females. In this research endeavor, our primary objective was to explore the ramifications of MXC regarding the developmental processes occurring during the initial stages of embryogenesis in pigs. Methods: In this study, we counted the blastocyst rate of early embryos cultured in vitro. We also examined the reactive oxygen species level, glutathione level, mitochondrial membrane potential, mitochondrial copy number and ATP level in four-cell stage embryos. Finally, apoptosis and DNA damage in blastocyst cells, as well as pluripotency-related and apoptosis-related genes in blastocyst cells were detected. The above experiments were used to evaluate the changes of MXC damage on early parthenogenetic embryo development. Results and Discussion: The results showed that early embryos exposed to MXC had a significantly lower cleavage rate, blastocyst rate, hatching rate, and total cell count compared with the control group. It was also of note that MXC not only increased the levels of reactive oxygen species (ROS), but also decreased the mitochondrial membrane potential (ΔΨm) and mitochondrial copy number during the development of early embryos. In addition, after MXC treatment, blastocyst apoptosis and DNA damage were increased, decreased cell proliferation, and the expression of pluripotency-related genes SOX2, NANOG, and OCT4 was down-regulated, while the expression of apoptosis-related genes BAX/BCL-2 and Caspase9 was up-regulated. Our results clearly show that MXC can have deleterious effects on the developmental processes of early porcine embryos, establishing the toxicity of MXC to the reproductive system. In addition, the study of this toxic effect may lead to greater concern about pesticide residues in humans and the use of safer pesticides, thus potentially preventing physiological diseases caused by chemical exposure.
Collapse
Affiliation(s)
- Zhaojun Geng
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| | - Yongxun Jin
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| | - Fushi Quan
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| | - Siyi Huang
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| | - Shuming Shi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| | - Bing Hu
- Animal Genome Editing Technology Innovation Center, College of Animal Science, Jilin University, Changchun, China
| | - Zhichao Chi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| | - Ilkeun Kong
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Mingjun Zhang
- Animal Genome Editing Technology Innovation Center, College of Animal Science, Jilin University, Changchun, China
| | - Xianfeng Yu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
5
|
Zhu Q, Ding D, Yang H, Zou W, Yang D, Wang K, Zhang C, Chen B, Ji D, Hao Y, Xue R, Xu Y, Wang Q, Wang J, Yan B, Cao Y, Zou H, Zhang Z. Melatonin Protects Mitochondrial Function and Inhibits Oxidative Damage against the Decline of Human Oocytes Development Caused by Prolonged Cryopreservation. Cells 2022; 11:cells11244018. [PMID: 36552782 PMCID: PMC9776420 DOI: 10.3390/cells11244018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MT) can improve the effect of cryopreservation on oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. In this study, MT was firstly applied to human oocytes' cryopreservation to explore the effect of prolonged cryopreservation on developmental competence and its role. Collected in vitro-matured human oocytes were cryopreserved in MT-containing or MT-free medium for 0 and 6 months; after warming, viable oocytes were assessed for developmental viability, intracellular protein expression, mitochondrial function, and oxidation-antioxidant system. Meanwhile, fresh oocytes were set as the control. The results showed that with the extension of cryopreservation time, the developmental competence of oocytes gradually declined, accompanied by the down-regulation of most mitochondrial function-related proteins, the reduction in ATP and GSH production, the increase in ROS accumulation, and the aggravation of the imbalance of ROS/GSH in oocytes. However, the participation of MT seemed to effectively mitigate these negative effects. Therefore, we speculate that melatonin may maintain normal ATP production and ROS/GSH balance in cryopreserved oocytes by protecting mitochondrial function and inhibiting oxidative damage, thereby effectively maintaining the developmental competence of human oocytes in prolonged cryopreservation.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Ding Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Han Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Kaijuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Chao Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Rufeng Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Qiushuang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Bo Yan
- The Second Clinical Medical School, Anhui Medical University, Hefei 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Zhiguo Zhang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
6
|
Tetrabromobisphenol Exposure Impairs Bovine Oocyte Maturation by Inducing Mitochondrial Dysfunction. Molecules 2022; 27:molecules27228111. [PMID: 36432212 PMCID: PMC9696588 DOI: 10.3390/molecules27228111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrabromobisphenol (TBBPA) is the most widely used brominated flame retardant in the world and displays toxicity to humans and animals. However, few studies have focused on its impact on oocyte maturation. Here, TBBPA was added to the culture medium of bovine cumulus-oocyte complexes (COCs) to examine its effect on oocytes. We found that TBBPA exposure displayed an adverse influence on oocyte maturation and subsequent embryonic development. The results of this study showed that TBBPA exposure induced oocyte meiotic failure by disturbing the polar-body extrusion of oocytes and the expansion of cumulus cells. We further found that TBBPA exposure led to defective spindle assembly and chromosome alignment. Meanwhile, TBBPA induced oxidative stress and early apoptosis by mediating the expression of superoxide dismutase 2 (SOD2). TBBPA exposure also caused mitochondrial dysfunction, displaying a decrease in mitochondrial membrane potential, mitochondrial content, mtDNA copy number, and ATP levels, which are regulated by the expression of pyruvate dehydrogenase kinase 3 (PDK3). In addition, the developmental competence of oocytes and the quality of blastocysts were also reduced after TBBPA treatment. These results demonstrated that TBBPA exposure impaired oocyte maturation and developmental competence by disrupting both nuclear and cytoplasmic maturation of the oocyte, which might have been caused by oxidative stress induced by mitochondrial dysfunction.
Collapse
|
7
|
de Oliveira LRM, de Aquino LVC, Santos MVDO, Freitas VJDF, Bertini LM, Pereira AF. Antioxidant effect of bioactive compounds isolated from Syzygium aromaticum essential oil on the in vitro developmental potential of bovine oocytes. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Passos JRS, Guerreiro DD, Otávio KS, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Nuñez-Olivera R, Crispo M, Bezerra MJB, Silva RF, Lima LF, Figueiredo JR, Bustamante-Filho IC, Menchaca A, Moura AA. Global proteomic analysis of pre-implantational ovine embryos produced in-vitro. Reprod Domest Anim 2022; 57:784-797. [PMID: 35377953 DOI: 10.1111/rda.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
The present study was conducted to characterize the major proteome of pre-implantation (D6) ovine embryos produced in vitro. COCs were aspirated from antral follicles (2-6 mm), matured and fertilized in vitro, and cultured until day six. Proteins were extracted separately from three pools of 45 embryos and separately run in SDS-PAGE. Proteins from each pool were individually subjected to in-gel digestion followed by LC-MS/MS. Three "raw. files" and protein lists were produced by Pattern Lab software but only proteins present in all three lists were used for the bioinformatics analyses. https://david.ncifcrf.govThere were 2,262 proteins identified in the 6-day old ovine embryos, including albumin, zona pellucida glycoprotein 2, 3 and 4, peptidyl arginine deiminase 6, actin cytoplasmic 1, gamma-actin 1, pyruvate kinase, heat shock protein 90 and protein disulfide isomerase, among others. Major biological processes linked to the sheep embryo proteome were translation, protein transport and protein stabilization, and molecular functions, defined as ATP binding, oxygen carrier activity and oxygen binding. There were 42 enriched functional clusters according to the 2,147 genes (UniProt database). Ten selected clusters with potential association with embryo development included translation, structural constituent of ribosomes, ribosomes, nucleosomes, structural constituent of the cytoskeleton, microtubule-based process, translation initiation factor activity, regulation of translational initiation, cell body and nucleotide biosynthetic process. The most representative KEEG pathways were ribosome, oxidative phosphorylation, glutathione metabolism, gap junction, mineral absorption, DNA replication and cGMP-PKG signaling pathway. Analyses of functional clusters clearly showed differences associated with the proteome of pre-implantation (D6) sheep embryos generated after in vitro fertilization in comparison with in vivo counterparts (Sanchez et al., 2021; https://doi.org/10.1111/rda.13897), confirming that the quality of in vitro derived blastocysts are unlike those produced in vivo. The present study portrays the first comprehensive overview of the proteome of pre-implantational ovine embryos grown in vitro.
Collapse
Affiliation(s)
- J R S Passos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - D D Guerreiro
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - K S Otávio
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - P C Dos Santos-Neto
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - M Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - F Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - R Nuñez-Olivera
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - M Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - M J B Bezerra
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - R F Silva
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, CE, Brazil
| | - L F Lima
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, CE, Brazil
| | - I C Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari, Lajeado, RS, Brazil
| | - A Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.,Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - A A Moura
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
de Oliveira LRM, Aquino LVCD, Santos MVDO, Freitas VJDF, Bertini LM, Pereira AF. Effects of different concentrations of eugenol in maturation medium on bovine oocytes, oxidative status and preimplantation embryos. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ContextEugenol is a bioactive compound with defined attributes, including a role in reducing oxidative stress. Therefore, it is an interesting candidate for in vitro embryo production that has an environment that favours the formation of reactive oxygen species.AimThe objective of the study was to evaluate different concentrations of eugenol in bovine oocytes during in vitro maturation to observe the oxidative status and embryonic development.MethodsOocytes were allocated into five groups: control (without antioxidant), 100μM cysteamine, 83μM eugenol (E83), 100μM eugenol and 120μM eugenol. Three experiments were performed with 23 replicates. Oocytes were evaluated for metaphase II, first polar body, cytoplasmic maturation, cumulus cell expansion and viability. Oxidative status was measured by mitochondrial membrane potential, reactive oxygen species and glutathione. Oocytes were artificially activated and cultured in vitro.Key resultsThe presence of eugenol at 83μM improved the metaphase II rate compared with all treatments (P<0.05). E83 and 100μM cysteamine improved first polar body extrusion, cumulus cell expansion, viability and mitochondrial aggregation rates (P<0.05). All antioxidant treatments resulted in increased cytoplasmic maturation and decreased mitochondrial membrane potential (P<0.05). Reactive oxygen species levels decreased, and glutathione levels increased with E83 and 100μM cysteamine treatments (P<0.05). Finally, the E83 group increased the cleavage rates, embryo development, number of expanded blastocysts and number of blastomeres (P<0.05).ConclusionsA low concentration of eugenol (83μM) is sufficient to generate a significant effect, attenuating the oxidative status and optimising in vitro maturation and embryo development.ImplicationsThis study provides information of a new natural antioxidant with defined concentration, 83μM eugenol, representing a lower cost alternative capable of improving the efficiency of in vitro embryo production in cattle.
Collapse
|
10
|
Yu S, Gao L, Zhang C, Wang Y, Lan H, Chu Q, Li S, Zheng X. Glycine Ameliorates Endoplasmic Reticulum Stress Induced by Thapsigargin in Porcine Oocytes. Front Cell Dev Biol 2021; 9:733860. [PMID: 34917610 PMCID: PMC8670231 DOI: 10.3389/fcell.2021.733860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle in the cytoplasm that plays important roles in female mammalian reproduction. The endoplasmic reticulum and mitochondria interact to maintain the normal function of cells by maintaining intracellular calcium homeostasis. As proven by previous research, glycine (Gly) can regulate the intracellular free calcium concentration ([Ca2+]i) and enhance mitochondrial function to improve oocyte maturation in vitro. The effect of Gly on ER function during oocyte in vitro maturation (IVM) is not clear. In this study, we induced an ER stress model with thapsigargin (TG) to explore whether Gly can reverse the ER stress induced by TG treatment and whether it is associated with calcium regulation. The results showed that the addition of Gly could improve the decrease in the average cumulus diameter, the first polar body excretion rate caused by TG-induced ER stress, the cleavage rate and the blastocyst rate. Gly supplementation could reduce the ER stress induced by TG by significantly improving the ER levels and significantly downregulating the expression of genes related to ER stress (Xbp1, ATF4, and ATF6). Moreover, Gly also significantly alleviated the increase in reactive oxygen species (ROS) levels and the decrease in mitochondrial membrane potential (ΔΨ m) to improve mitochondrial function in porcine oocytes exposed to TG. Furthermore, Gly reduced the [Ca2+]i and mitochondrial Ca2+ ([Ca2+]m) levels and restored the ER Ca2+ ([Ca2+]ER) levels in TG-exposed porcine oocytes. Moreover, we found that the increase in [Ca2+]i may be caused by changes in the distribution and expression of inositol 1,4,5-triphosphate receptor (IP3R1) and voltage-dependent anion channel 1 (VDAC1), while Gly can restore the distribution and expression of IP3R1 and VDAC1 to normal levels. Apoptosis-related indexes (Caspase 3 activity and Annexin-V) and gene expression Bax, Cyto C, and Caspase 3) were significantly increased in the TG group, but they could be restored by adding Gly. Our results suggest that Gly can ameliorate ER stress and apoptosis in TG-exposed porcine oocytes and can further enhance the developmental potential of porcine oocytes in vitro.
Collapse
Affiliation(s)
- Sicong Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lepeng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qianran Chu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China. .,Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
12
|
García-Martínez T, Vendrell-Flotats M, Martínez-Rodero I, Ordóñez-León EA, Álvarez-Rodríguez M, López-Béjar M, Yeste M, Mogas T. Glutathione Ethyl Ester Protects In Vitro -Maturing Bovine Oocytes against Oxidative Stress Induced by Subsequent Vitrification/Warming. Int J Mol Sci 2020; 21:ijms21207547. [PMID: 33066129 PMCID: PMC7588878 DOI: 10.3390/ijms21207547] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine whether the addition of glutathione ethyl ester (GSH-OEt) to the in vitro maturation (IVM) medium would improve the resilience of bovine oocytes to withstand vitrification. The effects of GSH-OEt on spindle morphology, levels of reactive oxygen species (ROS), mitochondrial activity and distribution, and embryo developmental potential were assessed together with the expression of genes with a role in apoptosis (BAX, BCL2), oxidative-stress pathways (GPX1, SOD1), water channels (AQP3), implantation (IFN-τ) and gap junctions (CX43) in oocytes and their derived blastocysts. Vitrification gave rise to abnormal spindle microtubule configurations and elevated ROS levels. Supplementation of IVM medium with GSH-OEt before vitrification preserved mitochondrial distribution pattern and diminished both cytoplasmic and mitochondrial ROS contents and percentages of embryos developing beyond the 8-cell stage were similar to those recorded in fresh non-vitrified oocytes. Although not significantly different from control vitrified oocytes, vitrified oocytes after GSH-OEt treatment gave rise to similar day 8-blastocyst and hatching rates to fresh non-vitrified oocytes. No effects of GSH-OEt supplementation were noted on the targeted gene expression of oocytes and derived blastocysts, with the exception of GPX1, AQP3 and CX43 in derived blastocysts. The addition of GSH-OEt to the IVM medium before vitrification may be beneficial for embryo development presumably as the consequence of additional anti-oxidant protection during IVM.
Collapse
Affiliation(s)
- Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
| | - Erika Alina Ordóñez-León
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Grupo InVitro, Tabasco 86040, Mexico
| | - Manuel Álvarez-Rodríguez
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, ES-17004 Girona, Spain;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|