1
|
Ye F, Jie H, Gan J, Liu K, Zhang Z, Xiang H, Liu W, Yin Q, Chen S, Yu H, Li H. Genome-wide association analysis of key genes for feed efficiency in Qingyuan Partridge chickens. Poult Sci 2024; 104:104632. [PMID: 39754929 PMCID: PMC11758409 DOI: 10.1016/j.psj.2024.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Qingyuan Partridge chickens represent a notable breed of high-quality, slow-growing chickens. The cost of feed constitutes 65-70 % of the total breeding expense for Qingyuan Partridge chickens. Enhancing feed utilization efficiency and reducing feed consumption are crucial for the advancement of Qingyuan Partridge chickens and the broader poultry industry. To investigate the key candidate genes associated with feed efficiency in Qingyuan Partridge chickens for genome selection, the genome-wide association study (GWAS) was performed in this study. Genetic parameters estimation results indiated that the heritability of 12-17 feed conversion ratio was 0.19, with the highest genetic correlation observed with 17 body weight (-0.96). Additionally, the heritability of 12-17 residual feed intake was 0.09, with the highest genetic correlation with 12-14 average daily feed intake (0.93). GWAS results revealed 28 significant SNPs associated with body weight, feed intake, metabolic weight, weight gain, feed conversion ratio, and residual feed intake. The multiple genes are significantly enriched in the aromatic compound biosynthetic process, heterocycle biosynthetic process, and nucleobase-containing compound biosynthetic process. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of four genes-exocyst complex component 4(EXOC4), fibrosin like 1(FBRSL1), methionine adenosyltransferase 2 non-catalytic beta subunit (MAT2B), and cytidine/uridine monophosphate kinase 1(CMPK1)-related to significant SNPs exhibited significant differences in the liver tissues of high residual feed intake group compared with low residual feed intake group. These findings contribute to a better understanding of the molecular mechanisms underlying chicken feed efficiency traits, enabling further genetic improvement of Qingyuan Partridge chickens, and improving industrial efficiency.
Collapse
Affiliation(s)
- Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hongwei Jie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiankang Gan
- Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Kunyu Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qiong Yin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China.
| |
Collapse
|
2
|
Li XH, Lee SH, Lu QY, Zhan CL, Lee GH, Kim JD, Sim JM, Song HJ, Cui XS. MAT2A is essential for zygotic genome activation by maintaining of histone methylation in porcine embryos. Theriogenology 2024; 230:81-90. [PMID: 39276507 DOI: 10.1016/j.theriogenology.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Revised: 08/18/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is an essential enzyme in the methionine cycle that generates S-adenosylmethionine (SAM) by reacting with methionine and ATP. SAM acts as a methyl donors for histone and DNA methylation, which plays key roles in zygotic genome activation (ZGA). However, the effects of MAT2A on porcine ZGA remain unclear. To investigate the function of MAT2A and its underlying mechanism in porcine ZGA, MAT2A was knocked down by double-stranded RNA injection at the 1-cell stage. MAT2A is highly expressed at every stage of porcine embryo development. The percentages of four-cell-stage embryos and blastocysts were lower in the MAT2A-knockdown (KD) group than in the control group. Notably, depletion of MAT2A decreased the levels of H3K4me2, H3K9me2/3, and H3K27me3 at the four-cell stage, whereas MAT2A KD reduced the transcriptional activity of ZGA genes. MAT2A KD decreased embryonic ectoderm development (EED) and enhancer of zeste homolog 2 (EZH2) expression. Exogenous SAM supplementation rescued histone methylation levels and developmental arrest induced by MAT2A KD. Additionally, MAT2A KD significantly increased DNA damage and apoptosis. In conclusion, MAT2A is involved in regulating transcriptional activity and is essential for regulating histone methylation during porcine ZGA.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeon-Ji Song
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
3
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
4
|
Sun N, Zhang Y, Dong J, Liu G, Liu Z, Wang J, Qiao Z, Zhang J, Duan K, Nian X, Ma Z, Yang X. Metabolomics profiling reveals differences in proliferation between tumorigenic and non-tumorigenic Madin-Darby canine kidney (MDCK) cells. PeerJ 2023; 11:e16077. [PMID: 37744241 PMCID: PMC10517658 DOI: 10.7717/peerj.16077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background Madin-Darby canine kidney (MDCK) cells are a cellular matrix in the production of influenza vaccines. The proliferation rate of MDCK cells is one of the critical factors that determine the vaccine production cycle. It is yet to be determined if there is a correlation between cell proliferation and alterations in metabolic levels. This study aimed to explore the metabolic differences between MDCK cells with varying proliferative capabilities through the use of both untargeted and targeted metabolomics. Methods To investigate the metabolic discrepancies between adherent cell groups (MDCK-M60 and MDCK-CL23) and suspension cell groups (MDCK-XF04 and MDCK-XF06), untargeted and targeted metabolomics were used. Utilizing RT-qPCR analysis, the mRNA expressions of key metabolites enzymes were identified. Results An untargeted metabolomics study demonstrated the presence of 81 metabolites between MDCK-M60 and MDCK-CL23 cells, which were mainly affected by six pathways. An analysis of MDCK-XF04 and MDCK-XF06 cells revealed a total of 113 potential metabolites, the majority of which were impacted by ten pathways. Targeted metabolomics revealed a decrease in the levels of choline, tryptophan, and tyrosine in MDCK-CL23 cells, which was in accordance with the results of untargeted metabolomics. Additionally, MDCK-XF06 cells experienced a decrease in 5'-methylthioadenosine and tryptophan, while S-adenosylhomocysteine, kynurenine, 11Z-eicosenoic acid, 3-phosphoglycerate, glucose 6-phosphate, and phosphoenolpyruvic acid concentrations were increased. The mRNA levels of MAT1A, MAT2B, IDO1, and IDO2 in the two cell groups were all increased, suggesting that S-adenosylmethionine and tryptophan may have a significant role in cell metabolism. Conclusions This research examines the effect of metabolite fluctuations on cell proliferation, thus offering a potential way to improve the rate of MDCK cell growth.
Collapse
Affiliation(s)
- Na Sun
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
| | - Yuchuan Zhang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jian Dong
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Geng Liu
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhenbin Liu
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
| | - Jiamin Wang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Zilin Qiao
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Jiayou Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Xuanxuan Nian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Zhongren Ma
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- China National Biotech Group Company Limited, Beijing, China
| |
Collapse
|
5
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
6
|
Wang M, Wang X, Liao T, Zhang X, Tang H. Atomic Fe−N−C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minkang Wang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinming Wang
- China Automotive Engineering Research Institute Co. Ltd. Chongqing 401122 China
| | - Tianhao Liao
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xinglong Zhang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Hui Tang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| |
Collapse
|