1
|
Long Z, Xiang W, Xiao W, Min Y, Qu F, Zhang B, Zeng L. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front Immunol 2024; 15:1432625. [PMID: 39524446 PMCID: PMC11543433 DOI: 10.3389/fimmu.2024.1432625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Artemisinin and its derivatives are widely recognized as first-line treatments for malaria worldwide. Recent studies have demonstrated that artemisinin-based antimalarial drugs, such as artesunate, dihydroartemisinin, and artemether, not only possess excellent antimalarial properties but also exhibit antitumor, antifungal, and immunomodulatory effects. Researchers globally have synthesized artemisinin derivatives like SM735, SM905, and SM934, which offer advantages such as low toxicity, high bioavailability, and potential immunosuppressive properties. These compounds induce immunosuppression by inhibiting the activation of pathogenic T cells, suppressing B cell activation and antibody production, and enhancing the differentiation of regulatory T cells. This review summarized the mechanisms by which artemisinin and its analogs modulate excessive inflammation and immune responses in rheumatic and skeletal diseases, autoimmune inflammatory diseases, and autoimmune disorders, through pathways including TNF, Toll-like receptors, IL-6, RANKL, MAPK, PI3K/AKT/mTOR, JAK/STAT, and NRF2/GPX4. Notably, in the context of the NF-κB pathway, artemisinin not only inhibits NF-κB expression by disrupting upstream cascades and/or directly binding to NF-κB but also downregulates multiple downstream genes controlled by NF-κB, including inflammatory chemokines and their receptors. These downstream targets regulate various immune cell functions, apoptosis, proliferation, signal transduction, and antioxidant responses, ultimately intervening in systemic autoimmune diseases and autoimmune responses in organs such as the kidneys, nervous system, skin, liver, and biliary system by modulating immune dysregulation and inflammatory responses. Ongoing multicenter randomized clinical trials are investigating the effects of these compounds on rheumatic, inflammatory, and autoimmune diseases, with the aim of translating promising preclinical data into clinical applications.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Yu Min
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Qu
- Department of Acupuncture and Massage, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Liuting Zeng
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liu Y, Azad MAK, Ding S, Zhu Q, Blachier F, Yu Z, Gao H, Kong X. Dietary bile acid supplementation in weaned piglets with intrauterine growth retardation improves colonic microbiota, metabolic activity, and epithelial function. J Anim Sci Biotechnol 2023; 14:99. [PMID: 37438768 DOI: 10.1186/s40104-023-00897-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is one of the major constraints in animal production. Our previous study showed that piglets with IUGR are associated with abnormal bile acid (BA) metabolism. This study explored whether dietary BA supplementation could improve growth performance and colonic development, function, microbiota, and metabolites in the normal birth weight (NBW) and IUGR piglets. A total of 48 weaned piglets (24 IUGR and 24 NBW) were allocated to four groups (12 piglets per group): (i) NBW group, (ii) NBW + BA group, (iii) IUGR group, and (iv) IUGR + BA group. Samples were collected after 28 days of feeding. RESULTS The results showed that dietary BA supplementation increased the length and weight of the colon and colon weight to body weight ratio, while decreased the plasma diamine oxidase (DAO) concentration in the NBW piglets (P < 0.05). Dietary BA supplementation to IUGR piglets decreased (P < 0.05) the plasma concentrations of D-lactate and endotoxin and colonic DAO and endotoxin, suggesting a beneficial effect on epithelial integrity. Moreover, dietary BA supplementation to NBW and IUGR piglets increased Firmicutes abundance and decreased Bacteroidetes abundance (P < 0.05), whereas Lactobacillus was the dominant genus in the colon. Metabolome analysis revealed 65 and 51 differential metabolites in the colon of piglets fed a diet with/without BA, respectively, which was associated with the colonic function of IUGR piglets. Furthermore, dietary BA supplementation to IUGR piglets upregulated the expressions of CAT, GPX, SOD, Nrf1, IL-2, and IFN-γ in colonic mucosa (P < 0.05). CONCLUSIONS Collectively, dietary BA supplementation could improve the colonic function of IUGR piglets, which was associated with increasing proportions of potentially beneficial bacteria and metabolites. Furthermore, BA shows a promising application prospect in improving the intestinal ecosystem and health of animals.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Francois Blachier
- Université Paris-SaclayAgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Zugong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Haijun Gao
- College of Medicine, Howard University, Washington, DC, 20059, USA
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
3
|
Effect of Dietary Supplemented with Mulberry Leaf Powder on Growth Performance, Serum Metabolites, Antioxidant Property and Intestinal Health of Weaned Piglets. Antioxidants (Basel) 2023; 12:antiox12020307. [PMID: 36829865 PMCID: PMC9952558 DOI: 10.3390/antiox12020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Background: The study aimed to explore the effect of mulberry leaf powder (MP) on the performance, serum metabolites and antioxidant property, as well as intestinal health, of weaned piglets. A total of 120 healthy piglets weighing 8.43 ± 1.91 kg (Duroc × (Landrace × Yorkshire); weaned at 28 d) were chosen and classified into four treatments with three replicates of 10 piglets each based on a randomized complete block design (barrow:gilt = 1:1). The diet treatments were a corn-soybean meal basal diet added with 0% (Ctrl), 2% (MP_2), 4% (MP_4) and 6% MP (MP_6), respectively. The feeding experiment was 28 days in total. The feeding period lasted for 28 days in total. Results: The diet supplemented with 2% MP had no detrimental effects on the growth performance, immunity, enzyme capacity and inflammatory factors, as well as intestinal barrier function. MP_2 is capable of decreasing the levels of serum D-lactic acid and lactate dehydrogenase, enhancing the superoxide dismutase capacity in the liver and diminishing the potential pathogenic bacteria Allisonella in the colon. However, compared with MP_2, MP_6 had unfavorable effects on the average daily gain and average daily feed intake; the concentration of serum non-esterified fatty acids; the activities of superoxide dismutase and glutathione peroxidase and the capacity of lipase and amylase, as well as the intestinal barrier function-related mRNA expression of occludin, claudin-1 and mucin-2 in piglets. Conclusion: Taken together, piglets fed with 2% MP had no adverse effect and was capable of improving the serum metabolites, enhancing the antioxidant capacity (SOD) and lowering the potential pathogenic bacteria of the hindgut (Allisonella). However, the highest concentration of MP (6%) may cause detrimental effects for piglets, which are probably associated with the higher antinutritional factors and fiber. Therefore, the dietary supplementation of 2% MP for piglets may be advisable.
Collapse
|
4
|
Chen X, Chen L, Qin Y, Mao Z, Huang Z, Jia G, Zhao H, Liu G. Dietary L-theanine supplementation improves lipid metabolism and antioxidant capacity in weaning piglets. Anim Biotechnol 2022; 33:1407-1415. [PMID: 35852117 DOI: 10.1080/10495398.2022.2099883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to explore the effects of dietary L-theanine (LT) supplementation on lipid metabolism and antioxidant capacity in weaned piglets. Twenty-one castrated DLY weaning piglets were randomly divided into three groups: a basal diet, a basal diet supplemented with 0.05% and 0.1% LT, respectively. Our data showed that dietary LT supplementation decreased T-CHO, TG, LDL-C and apoB levels and increased apoA and HDL-C levels in serum, but decreased the hepatic TG and T-CHO contents. Dietary LT supplementation increased the antioxidant capacity in serum and liver, and significantly increased the Nrf2 mRNA level and the nucleus Nrf2 protein level, but decreased the mRNA level of keap1 in the liver. In addition, dietary LT supplementation significantly increased HSL enzyme activity and the levels of CPT1 and TBA, while decreasing the enzyme activities of LPL and FAS in the liver. Furthermore, the mRNA levels HMG-CoAR, CPT-1a and PPARα and the protein levels of phosphorylated-AMPK and PGC-1α were increased by LT. Together, our data provide the first evidence that dietary supplementation of LT could improve lipid metabolism and antioxidant capacity in the liver of weaned piglets, and the effect might be mediated by activation of AMPK and Nrf2 signaling, respectively.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Lili Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yaning Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Liu Y, Azad MAK, Zhu Q, Yu Z, Kong X. Dietary bile acid supplementation alters plasma biochemical and hormone indicators, intestinal digestive capacity, and microbiota of piglets with normal birth weight and intrauterine growth retardation. Front Microbiol 2022; 13:1053128. [PMID: 36439828 PMCID: PMC9684342 DOI: 10.3389/fmicb.2022.1053128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Piglets with intrauterine growth retardation (IUGR) have poor small intestinal morphology and function, resulting in impaired digestion and absorption of nutrients and lower growth performance. Bile acids (BA) are important in regulating digestive enzyme activity, digestion and absorption of lipids, intestinal development, and protecting the liver. The present study aimed to investigate the effects of dietary BA supplementation on plasma biochemical and hormone indicators, intestinal morphology and function, and microbial community in piglets with normal birth weight (NBW) and IUGR. Weaned piglets (24 IUGR and 24 NBW) were allocated to four groups (12 piglets per group) and fed the following diets: (i) NBW group, NBW piglets fed a basal diet; (ii) NBW + BA group, NBW piglets fed a basal diet with 400 mg/kg BA; (iii) IUGR group, IUGR piglets fed a basal diet; and (iv) IUGR + BA group, IUGR piglets fed a basal diet with 400 mg/kg BA. The feeding trial lasted 28 days. The results showed that IUGR decreased the weight of the jejunum, whereas dietary BA supplementation decreased the jejunum weight and increased the length, weight, and index of ileum in NBW piglets (p < 0.05). In addition, IUGR increased (p < 0.05) the plasma choline esterase (CHE) and glucose levels of weaned piglets regardless of BA supplementation. Dietary BA supplementation increased the plasma albumin, triglyceride, and total protein concentrations while decreased plasma aspartate transaminase (AST), alanine aminotransferase (ALT), CHE, lactate dehydrogenase, and NH3 levels regardless of IUGR (p < 0.05). The IUGR increased trypsin level in the ileum, whereas dietary BA supplementation decreased jejunal trypsin and lipase and ileal lipase levels of weaned piglets regardless of IUGR (p < 0.05). Spearman’s correlation analysis revealed the potential link between the intestinal microbial community and intestinal health-related indices of weaned piglets. These findings suggest that IUGR could decrease small intestinal morphology and function, whereas dietary BA supplementation could promote the ileum development of NBW piglets, protect the liver by reducing plasma ALT and AST levels, and increase the proportion of potentially beneficial bacteria in the small intestine of NBW and IUGR piglets, contributing to intestinal development and health of weaned piglets.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Md. Abul Kalam Azad
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zugong Yu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- *Correspondence: Zugong Yu,
| | - Xiangfeng Kong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Xiangfeng Kong,
| |
Collapse
|
6
|
Li J, Bai Y, Ma K, Ren Z, Li J, Zhang J, Shan A. Dihydroartemisinin alleviates deoxynivalenol induced liver apoptosis and inflammation in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113811. [PMID: 35772362 DOI: 10.1016/j.ecoenv.2022.113811] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Deoxynivalenol (DON) is one of the mycotoxins that contaminate cereals and feed, thereby endangering human and animal health. Dihydroartemisinin (DHA), a derivative of artemisinin, has anti-inflammatory and antioxidant functions in addition to anti-malaria and anti-cancer. The purpose of this study was to investigate the effects of DHA on alleviating liver apoptosis and inflammation induced by DON in piglets. The experimental design followed a 2 (normal diet and DON-contaminated diet) × 2 (with and without supplementation of DHA) factorial arrangement. 36 weaned piglets were subjected to a 21-day experiment. Results showed that DON increased ALT activity, the levels of TNF-α, IL-1β and IL-2, and reduced the levels of total protein (TP) and albumin (ALB) in the serum. However, DHA decreased the levels of TNF-α, IL-1β and IL-2, and increased the levels of TP and ALB. Also, DON decreased glutathione (GSH) content and catalase (CAT) activity, and increased methane dicarboxylic aldehyde (MDA) content. But GSH content was increased by DHA. In addition, DHA decreased DON-induced increase in apoptosis rate of hepatocytes. Furthermore, DON activated death receptor pathway to promote apoptosis by up-regulating the protein expression of FasL and caspase-3, and the mRNA expression of FasL, TNFR1, caspase-8, Bid, Bax, CYC and caspase-3. However, DHA reduced caspase-3 protein expression, as well as the mRNA expression of FADD, Bid, Bax, CYC and caspase-3. Besides, DON also activated TNF/NF-κB pathway to induce an inflammatory response by up-regulating TNF-α protein expression, and the mRNA expression of TNFR1, RIP1, IKKβ, IκBα, IL-1β and IL-8. Nevertheless, DHA reduced the mRNA expression of RIP1, IκBα, NF-κB, IL-1β and IL-6, and the protein expression of TNF-α and NF-κB. In conclusion, DHA improved DON-induced negative effects on serum biochemical parameters and inflammatory cytokine levels, hepatic antioxidant capacity, hepatic apoptosis and inflammation.
Collapse
Affiliation(s)
- Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongsong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaidi Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhongshuai Ren
- College of Animal Sciences, Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Changchun 130062, PR China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Zhang
- College of Animal Sciences, Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Changchun 130062, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Gao LM, Liu GY, Wang HL, Wassie T, Wu X. Maternal pyrimidine nucleoside supplementation regulates fatty acid, amino acid and glucose metabolism of offspring. ANIMAL NUTRITION 2022; 11:309-321. [PMID: 36312745 PMCID: PMC9589032 DOI: 10.1016/j.aninu.2022.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Pyrimidine nucleosides (PN) are abundant in mammalian milk and mainly involved in glycogen deposition and lipid metabolism. To investigate the effects of maternal supplementation with pyrimidine nucleoside on glucose, fatty acids (FAs), and amino acids (AAs) metabolism in neonatal piglets. Forty pregnant sows were randomly assigned into the control (CON) group (fed a basal diet, n = 20) or the PN group (fed a basal diet supplemented with PN at 150 g/t, n = 20). Litter size, born alive and birth litter weight were recorded. The serum and placenta of sows, and jejunum and liver of neonatal piglets were sampled. The results indicated that supplementing sow diets with PN decreased birth mortality and increased the birth weight of piglets (P < 0.05). In addition, neonates from sows supplemented with PN had higher glucose levels in serum and liver compared with the CON group (P < 0.05). Moreover, maternal PN supplementation regulated the ratio of saturated FAs and polyunsaturated FAs, and AAs content in serum and liver of piglets (P < 0.05). Furthermore, an up-regulation of mRNA expression of genes related to glucose and AA transport were observed in the neonatal jejunum from the PN group (P < 0.05). Additionally, hepatic protein expressions of phosphorylated hormone-sensitive lipase (P-HSL), HSL, sterol regulatory element-binding transcription factor 1c (SREBP-1c), and phosphorylated protein kinase B (P-AKT) was higher in the piglets from the PN group than the CON group (P < 0.05). Together, maternal PN supplementation may regulate nutrient metabolism of neonatal piglets by modulating the gene expression of glucose and AA transporters in placenta and jejunum, and the gene and protein expression of key enzymes related to lipid metabolism in liver of neonatal piglets, which may improve the reproductive performance of sows.
Collapse
|
8
|
Wang CZ, Wan C, Luo Y, Zhang CF, Zhang QH, Chen L, Liu Z, Wang DH, Lager M, Li CH, Jiang TL, Hou L, Yuan CS. Effects of dihydroartemisinin, a metabolite of artemisinin, on colon cancer chemoprevention and adaptive immune regulation. Mol Biol Rep 2022; 49:2695-2709. [PMID: 35040004 DOI: 10.1007/s11033-021-07079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Artemisinin (ART) is an anti-malaria natural compound with a moderate anticancer action. As a metabolite of ART, dihydroartemisinin (DHA) may have stronger anti-colorectal cancer (CRC) bioactivities. However, the effects of DHA and ART on CRC chemoprevention, including adaptive immune regulation, have not been systematically evaluated and compared. METHODS Coupled with a newly-established HPLC analytical method, enteric microbiome biotransformation was conducted to identify if the DHA is a gut microbial metabolite of ART. The anti-CRC potential of these compounds was compared using two different human CRC cell lines for cell cycle arrest, apoptotic induction, and anti-inflammation activities. Naive CD4+ T cells were also obtained for testing the compounds on the differentiation of Treg, Th1 and Th17. RESULTS Using compound extraction and analytical methods, we observed for the first time that ART completely converted into its metabolites by gut microbiome within 24 h, but no DHA was detected. Although ART did not obviously influence cancer cell growth in the concentration tested, DHA very significantly inhibited the cancer cell growth at relatively low concentrations. DHA included G2/M cell cycle arrest via upregulation of cyclin A and apoptosis. Both ART and DHA downregulated the pro-inflammatory cytokine expression. The DHA significantly promoted Treg cell proliferation, while both ART and DHA inhibited Th1 and Th17 cell differentiation. CONCLUSIONS As a metabolite of ART, DHA possessed stronger anti-CRC activities. The DHA significantly inhibited cell growth via cell cycle arrest, apoptosis induction and anti-inflammation actions. The adaptive immune regulation is a related mechanism of actions for the observed effects.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA.
| | - Chunping Wan
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Yun Luo
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhi Liu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Daniel H Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Mallory Lager
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
| | - Cang-Hai Li
- Tang Center for Traditional Chinese Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ting-Liang Jiang
- Tang Center for Traditional Chinese Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lifei Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Xiong Y, Huang J. Anti-malarial drug: the emerging role of artemisinin and its derivatives in liver disease treatment. Chin Med 2021; 16:80. [PMID: 34407830 PMCID: PMC8371597 DOI: 10.1186/s13020-021-00489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Artemisinin and its derivatives belong to a family of drugs approved for the treatment of malaria with known clinical safety and efficacy. In addition to its anti-malarial effect, artemisinin displays anti-viral, anti-inflammatory, and anti-cancer effects in vivo and in vitro. Recently, much attention has been paid to the therapeutic role of artemisinin in liver diseases. Several studies suggest that artemisinin and its derivatives can protect the liver through different mechanisms, such as those pertaining to inflammation, proliferation, invasion, metastasis, and induction of apoptosis and autophagy. In this review, we provide a comprehensive discussion of the underlying molecular mechanisms and signaling pathways of artemisinin and its derivatives in treating liver diseases. Further pharmacological research will aid in determining whether artemisinin and its derivatives may serve as promising medicines for the treatment of liver diseases in the future. ![]()
Collapse
Affiliation(s)
- Ye Xiong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jianrong Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Wang JS, Hu HJ, Xu YB, Wang DC, Jiang L, Li KX, Wang YY, Zhan XA. Effects of posthatch feed deprivation on residual yolk absorption, macronutrients synthesis, and organ development in broiler chicks. Poult Sci 2020; 99:5587-5597. [PMID: 33142476 PMCID: PMC7647868 DOI: 10.1016/j.psj.2020.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of the research was to evaluate the dynamic changes of early posthatch starvation on residual yolk absorption, synthesis of macronutrients (protein, lipid, and glycogen), and organ development in broiler chicks. A total of 720 1-day-old chicks (Lingnan Yellow) were randomly assigned to 3 treatments: group A (nonfasted), group B (fasting for 24 h after placement), and group C (fasting for 48 h after placement). The trial lasted for 168 h, and water was provided ad libitum all the time. Sampling was performed at 0, 24, 48, 72, 120, and 168 h. Nonfasting (group A) promoted (P < 0.05) the absorption of amino acids, fatty acids, mineral elements, protein, and maternal antibody in the residual yolk of broiler chicks. The concentration of insulin-like growth factor 1 in plasma and the liver was higher (P < 0.05) in group A. Nonfasting enhanced (P < 0.05) the synthesis of protein and glycogen in the breast muscle and liver; the relative weights of the liver, pancreas, and spleen; and body weight, but retarded (P < 0.05) the synthesis of triglyceride in the liver. The results indicated that nonfasting (group A) after placement promoted the absorption of residual yolk and synthesis of protein and glycogen in the breast muscle and liver, whereas early feed deprivation promoted the synthesis of lipid in the liver. Thereby, nonfasting after placement promoted organ development and body growth of broiler chicks.
Collapse
Affiliation(s)
- J S Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - H J Hu
- Qingdao Vland Biotech Inc., Qingdao 266000, China
| | - Y B Xu
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D C Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - L Jiang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - K X Li
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y Y Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|