1
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
2
|
Özbek MA, Bereli N, Özgür E, Denizli A. Human serum albumin depletion based on dye ligand affinity chromatography via magnetic microcryogels. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:449-462. [PMID: 36123323 DOI: 10.1080/09205063.2022.2127142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the primary purposes of proteomic studies is to analyze the proteins in the blood to be considered as biomarkers. Albumin, which constitutes the majority of total serum proteins, complicates the discovery of low-density proteins that are important for the diagnosis of diseases. Based on this, an alternative approach for albumin depletion was developed in this study by covalently attached Cibacron Blue 3GA (CB) to magnetic microcryogels. After detailed characterization of CB attached magnetic microcryogels synthesized via a microstencil array chip, albumin adsorption studies were performed to examine the optimum depletion conditions. In the presented study, the maximum albumin adsorption capacity (Qmax) was calculated as 149.25 mg/mL in pH 5.0 acetate buffer solution, which is the optimum pH value for albumin. Experimental studies have demonstrated that CB-attached magnetic microcryogels can be reused without loss of performance for albumin depletion after 10 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Merve Asena Özbek
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erdoğan Özgür
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
A magnetostrictive self-powered biosensor based on Au-BaTiO3-FeGa & PDMS. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Aylaz G, Zenger O, Baydemir Peşint G, Andaç M. Molecularly imprinted composite discs for transferrin recognition. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1990950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gülgün Aylaz
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Okan Zenger
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Müge Andaç
- Department of Environmental Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Schalich KM, Reiff OM, Nguyen BT, Lamb CL, Mondoza CR, Selvaraj V. Temporal kinetics of bovine mammary IgG secretion into colostrum and transition milk. J Anim Sci 2021; 99:6170618. [PMID: 33715013 DOI: 10.1093/jas/skab083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal calf survival and health is predominantly dependent on sufficient consumption of immunoglobulin G (IgG) and the resulting transfer of passive immunity (TPI). In this study, we investigate the potential for continued IgG secretion and temporal kinetics of mammary IgG output in sequential milkings performed at 0, 4, 16, 28, 40, and 52 hr postcalving in Holstein dairy cows. For colostrum (0 hr), we also scrutinize the relationships between IgG concentration, volume, refractometer readings (˚Bx values, Brix) and concentration of sugars (lactose and glucose). Mammary transcripts postpartum (0 hr) indicated that active IgG secretion continues beyond the first milking (colostrum; n = 4 to 5). IgG measurements at the different timepoints indicated that colostrum represents only 25.1% of the total IgG produced across the 6 sequential milking timepoints, with a substantial 48.9% being secreted into transition milk over the next 3 timepoints (4-, 6-, and 28-hr) combined. The differences on the basis of IgG concentrations across 0-, 4-, and 16-hr milking timepoints were not statistically significant (P = 0.1522; n = 9). For colostrum, volume remained highly variable, even with induced let-down prior to milking (n = 27). Nonetheless, colostrum IgG secretion was significantly co-regulated with volume (R2 = 0.915; P < 0.001; n = 18), an association that was stronger than that measured for lactose (R2 = 0.803; P < 0.001; n = 18) and glucose (R2 = 0.467; P = 0.002; n = 17). Comparing colostrum ˚Bx values to absolute IgG concentrations showed no correlation (R2 = 0.127; P = 0.07; n = 27); biochemical separation of colostrum components indicated that both proteins and nonprotein solutes could affect ˚Bx values (P < 0.0001 for both; n = 5). This suggests that ˚Bx values do not reasonably indicate IgG concentration to serve as a measure of "colostrum quality." Additionally, our finding that early transition milk (4-, 6-, and 28-hr) can contribute substantially more IgG than colostrum forces a rethink of existing feeding paradigms and means to maximize TPI in calves. Collectively, our results reveal the remarkable value of early transition milk and caveats to colostrum assessments that could advance application in enhancing neonatal calf health.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell, University, Ithaca, NY 14853, USA
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell, University, Ithaca, NY 14853, USA
| | - Blake T Nguyen
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell, University, Ithaca, NY 14853, USA.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary, Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Cassandra L Lamb
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell, University, Ithaca, NY 14853, USA
| | - Cecilia R Mondoza
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell, University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell, University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Abstract
A sensitive, rapid, and cost-effective method for quantitative analysis of proteins (e.g., detection, purification, depletion) for a wide variety of purposes is required in a number of areas, such as immunodiagnostics and biotechnology. Double-layer imprinting technique, which is carried out via polymerization of polymer solution with higher monomer concentration, covering and filling the supermacroporous structure of a pre-synthesized cryogel column with a lower monomer concentration, thus improving the surface area and adsorption capacity of final product, is a brand new approach for the application of cryogels in molecular imprinting technology. Within the scope of this chapter, BSA is selected as a model protein for the application of double-layer imprinting protocol. In this chapter, synthesis of double-layer BSA-imprinted and non-imprinted cryogel columns (BSA-DLIP and DLNIP, respectively) are described. In addition, characterization of synthesized columns and BSA depletion studies from aqueous solutions are described in detail, as well as selectivity of BSA-DLIPs for BSA, against competitors.
Collapse
Affiliation(s)
- Okan Zenger
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey.
| |
Collapse
|