1
|
An Z, Luo G, Abdelrahman M, Riaz U, Gao S, Yao Z, Ye T, Lv H, Zhao J, Chen C, Yang L. Effects of capsicum oleoresin supplementation on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. Front Microbiol 2022; 13:1005818. [PMID: 36225375 PMCID: PMC9549126 DOI: 10.3389/fmicb.2022.1005818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to determine the effect of capsicum oleoresin (CAP) on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. The experimental design was arranged in a 2 × 2 × 3 factorial format together with two temperatures (normal: 39°C; hyperthermal: 42°C), two forage/concentrate ratios (30:70; 70:30), and two CAP concentrations in the incubation fluid at 20 and 200 mg/L with a control group. Regarding the fermentation characteristics, high temperature reduced short-chain fatty acids (SCFA) production except for molar percentages of butyrate while increasing acetate-to-propionate ratio and ammonia concentration. The diets increased total SCFA, propionate, and ammonia concentrations while decreasing acetate percentage and acetate-to-propionate ratio. CAP reduced acetate percentage and acetate-to-propionate ratio. Under hyperthermal condition, CAP could reduce acetate percentage and increase acetate-to-propionate ratio, lessening the negative effect of high heat on SCFA. Hyperthermal condition and diet altered the relative abundance of microbial abundance in cellulose-degrading bacteria. CAP showed little effect on the microbial abundance which only increased Butyrivibrio fibrisolvens. Thus, CAP could improve rumen fermentation under different conditions, with plasticity in response to the ramp of different temperature and dietary conditions, although hardly affecting rumen microbial abundance.
Collapse
Affiliation(s)
- Zhigao An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Mohamed Abdelrahman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Animal Production Department, Faculty of Agriculture, Assiut University, Asyut, Egypt
| | - Umair Riaz
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shanshan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Zhiqiu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Tingzhu Ye
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Haimiao Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Jvnwei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | | | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
- *Correspondence: Liguo Yang,
| |
Collapse
|