1
|
Sahay S, Prajapati A, Shome BR, Rahman H, Shome R. Mapping Heterogeneous Population Structure of Mannheimia haemolytica Associated with Pneumonic Infection of Sheep in Southern State Karnataka, India. Curr Microbiol 2024; 81:219. [PMID: 38862704 DOI: 10.1007/s00284-024-03740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024]
Abstract
Mannheimia haemolytica is recognized as principal pathogen associated with pneumonic pasteurellosis leading to huge economic losses to small ruminant farmers. Even though the disease causes huge economic losses, epidemiology of M. haemolytica is less studied, hindering the formulation of effective control strategies. Current study aimed to highlight molecular characterisation of M. haemolytica strains isolated from ovine pneumonic infection. M. haemolytica 27 isolates with two reference strains were characterised using capsular and virulence gene typing, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) methods. M. haemolytica serotype A2 recognized as predominant serotype (74%) followed by A6 (11%) and A1 (5%) serotypes. Virulence gene profiling by PCRs showed dominance of all five virulent genes [such as adh and gcp (100% each)] followed by gs60 (88.8%), lktC (85.2%), tbpB (51.9%) and least nmaA gene (14.8%). MLST profiling delineated M. haemolytic isolates into 11 sequence types (STs) with most prevalent being ST37 (27.9%) and ST16 (23%) and nine new STs (ST37, 38, 39, 40, 41, 42, 47, 48, and 49). These new STs did not belong to any of the three clonal complexes (CC4, CC8 and CC28). ST16 was exclusively noted in A1 and A6 serotypes. Amongst 25 isolates, 22 pulsotypes (GD 0.88) recorded indicated variability of the M. haemolytica isolates in PFGE analysis. In conclusion, the study suggested dominance of M. haemolytica serotype A2 harbouring different virulent genes, diverse STs and pulsotypes responsible for pneumonic pasteurellosis frequently encountered in sheep.
Collapse
Affiliation(s)
- Swati Sahay
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560064, India
- Department of Microbiology, Centre for Research in Pure and Applied Sciences, Jain University, Bengaluru, 560011, India
| | - Awadhesh Prajapati
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Bibek Ranjan Shome
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Habibur Rahman
- International Livestock Research Institute, Block-C, First Floor, NASC Complex, CG Centre, DPS Marg, Pusa, New Delhi, 110012, India
| | - Rajeswari Shome
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560064, India.
| |
Collapse
|
2
|
Kayal A, Nahar N, Barker L, Tran T, Williams M, Blackall PJ, Turni C, Omaleki L. Molecular identification and characterisation of Mannheimia haemolytica. Vet Microbiol 2024; 288:109930. [PMID: 38086163 DOI: 10.1016/j.vetmic.2023.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Mannheimia haemolytica is known as one of the major bacterial contributors to Bovine Respiratory Disease (BRD) syndrome. This study sought to establish a novel species-specific PCR to aid in identification of this key pathogen. As well, an existing multiplex PCR was used to determine the prevalence of serovars 1, 2 or 6 in Australia. Most of the 65 studied isolates originated from cattle with a total of 11 isolates from small ruminants. All problematic field isolates in the identification or serotyping PCRs were subjected to whole genome sequencing and bioinformatic analysis. The field isolates were also subjected to rep-PCR fingerprinting. A total of 59 out of the 65 tested isolates were conformed as M. haemolytica by the new species-specific PCR which is based on the rpoB gene. The confirmed M. haemolytica field isolates were assigned to serovars 1 (24 isolates), 2 (seven isolates) and 6 (26 isolates) while two of the isolates were negative in the serotyping PCR. The two non-typeable isolates were assigned to serovar 7 and 14 following whole genome sequencing and bioinformatic analysis. The rep-PCR typing resulted in five major clusters with serovars 1 and 6 often within the same cluster. The M. haemolytica-specific PCR developed in this work was species specific and should be a valuable support for frontline diagnostic laboratories. The serotyping results support the relative importance of serovars 1 and 6 in bovine respiratory disease.
Collapse
Affiliation(s)
- Advait Kayal
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia
| | - Nusrat Nahar
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia
| | - Leslie Barker
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Coopers Plains, Queensland 4108, Australia
| | - Thuy Tran
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Coopers Plains, Queensland 4108, Australia
| | - Mariana Williams
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Coopers Plains, Queensland 4108, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia.
| |
Collapse
|
3
|
Wang S, Huang A, Gu Y, Li J, Huang L, Wang X, Tao Y, Liu Z, Wu C, Yuan Z, Hao H. Rational Use of Danofloxacin for Treatment of Mycoplasma gallisepticum in Chickens Based on the Clinical Breakpoint and Lung Microbiota Shift. Antibiotics (Basel) 2022; 11:antibiotics11030403. [PMID: 35326865 PMCID: PMC8944443 DOI: 10.3390/antibiotics11030403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
The study was to explore the rational use of danofloxacin against Mycoplasma gallisepticum (MG) based on its clinical breakpoint (CBP) and the effect on lung microbiota. The CBP was established according to epidemiological cutoff value (ECV/COWT), pharmacokinetic–pharmacodynamic (PK–PD) cutoff value (COPD) and clinical cutoff value (COCL). The ECV was determined by the micro-broth dilution method and analyzed by ECOFFinder software. The COPD was determined according to PK–PD modeling of danofloxacin in infected lung tissue with Monte Carlo analysis. The COCL was performed based on the relationship between the minimum inhibitory concentration (MIC) and the possibility of cure (POC) from clinical trials. The CBP in infected lung tissue was 1 μg/mL according to CLSI M37-A3 decision tree. The 16S ribosomal RNA (rRNA) sequencing results showed that the lung microbiota, especially the phyla Firmicutes and Proteobacteria had changed significantly along with the process of cure regimen (the 24 h dosing interval of 16.60 mg/kg b.w for three consecutive days). Our study suggested that the rational use of danofloxacin for the treatment of MG infections should consider the MIC and effect of antibiotics on the respiratory microbiota.
Collapse
Affiliation(s)
- Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Jun Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287186; Fax: +86-27-87672232
| |
Collapse
|
4
|
Myer PR, McDaneld TG, Kuehn LA, Dedonder KD, Apley MD, Capik SF, Lubbers BV, Harhay GP, Harhay DM, Keele JW, Henniger MT, Clemmons BA, Smith TPL. Classification of 16S rRNA reads is improved using a niche-specific database constructed by near-full length sequencing. PLoS One 2020; 15:e0235498. [PMID: 32658916 PMCID: PMC7357769 DOI: 10.1371/journal.pone.0235498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Surveys of microbial populations in environmental niches of interest often utilize sequence variation in the gene encoding the ribosomal small subunit (the 16S rRNA gene). Generally, these surveys target the 16S genes using semi-degenerate primers to amplify portions of a subset of bacterial species, sequence the amplicons in bulk, and assign to putative taxonomic categories by comparison to databases purporting to connect specific sequences in the main variable regions of the gene to specific organisms. Due to sequence length constraints of the most popular bulk sequencing platforms, the primers selected amplify one to three of the nine variable regions, and taxonomic assignment is based on relatively short stretches of sequence (150-500 bases). We demonstrate that taxonomic assignment is improved through reduced unassigned reads by including a survey of near-full-length sequences specific to the target environment, using a niche of interest represented by the upper respiratory tract (URT) of cattle. We created a custom Bovine URT database from these longer sequences for assignment of shorter, less expensive reads in comparisons of the upper respiratory tract among individual animals. This process improves the ability to detect changes in the microbial populations of a given environment, and the accuracy of defining the content of that environment at increasingly higher taxonomic resolution.
Collapse
Affiliation(s)
- Phillip R. Myer
- Department of Animal Science, University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Tara G. McDaneld
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Larry A. Kuehn
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Keith D. Dedonder
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Michael D. Apley
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Sarah F. Capik
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Brian V. Lubbers
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Gregory P. Harhay
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Dayna M. Harhay
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - John W. Keele
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Madison T. Henniger
- Department of Animal Science, University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Brooke A. Clemmons
- Department of Animal Science, University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy P. L. Smith
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| |
Collapse
|
5
|
Ovine Mannheimia haemolytica isolates from lungs with and without pneumonic lesions belong to similar genotypes. Vet Microbiol 2018; 219:80-86. [DOI: 10.1016/j.vetmic.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 11/22/2022]
|
6
|
Johnston D, Earley B, Cormican P, Murray G, Kenny DA, Waters SM, McGee M, Kelly AK, McCabe MS. Illumina MiSeq 16S amplicon sequence analysis of bovine respiratory disease associated bacteria in lung and mediastinal lymph node tissue. BMC Vet Res 2017; 13:118. [PMID: 28464950 PMCID: PMC5414144 DOI: 10.1186/s12917-017-1035-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/21/2017] [Indexed: 11/16/2022] Open
Abstract
Background Bovine respiratory disease (BRD) is caused by growth of single or multiple species of pathogenic bacteria in lung tissue following stress and/or viral infection. Next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis) is a powerful culture-independent open reference method that has recently been used to increase understanding of BRD-associated bacteria in the upper respiratory tract of BRD cattle. However, it has not yet been used to examine the microbiome of the bovine lower respiratory tract. The objective of this study was to use NGS 16S amplicon analysis to identify bacteria in post-mortem lung and lymph node tissue samples harvested from fatal BRD cases and clinically healthy animals. Cranial lobe and corresponding mediastinal lymph node post-mortem tissue samples were collected from calves diagnosed as BRD cases by veterinary laboratory pathologists and from clinically healthy calves. NGS 16S amplicon libraries, targeting the V3-V4 region of the bacterial 16S rRNA gene were prepared and sequenced on an Illumina MiSeq. Quantitative insights into microbial ecology (QIIME) was used to determine operational taxonomic units (OTUs) which corresponded to the 16S rRNA gene sequences. Results Leptotrichiaceae, Mycoplasma, Pasteurellaceae, and Fusobacterium were the most abundant OTUs identified in the lungs and lymph nodes of the calves which died from BRD. Leptotrichiaceae, Fusobacterium, Mycoplasma, Trueperella and Bacteroides had greater relative abundances in post-mortem lung samples collected from fatal cases of BRD in dairy calves, compared with clinically healthy calves without lung lesions. Leptotrichiaceae, Mycoplasma and Pasteurellaceae showed higher relative abundances in post-mortem lymph node samples collected from fatal cases of BRD in dairy calves, compared with clinically healthy calves without lung lesions. Two Leptotrichiaceae sequence contigs were subsequently assembled from bacterial DNA-enriched shotgun sequences. Conclusions The microbiomes of the cranial lung lobe and mediastinal lymph node from calves which died from BRD and from clinically healthy H-F calves have been characterised. Contigs corresponding to the abundant Leptotrichiaceae OTU were sequenced and found not to be identical to any known bacterial genus. This suggests that we have identified a novel bacterial species associated with BRD. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1035-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dayle Johnston
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland.,School of Agriculture Food Science and Veterinary Medicine, University College Dublin, Dublin, Belfield, Dublin 4, Ireland
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Gerard Murray
- Department of Agriculture, Food and the Marine, Regional Veterinary Laboratory, Sligo, Co. Sligo, Ireland
| | - David Anthony Kenny
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Sinead Mary Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Alan Kieran Kelly
- School of Agriculture Food Science and Veterinary Medicine, University College Dublin, Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Sean McCabe
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
7
|
Puchalski A, Urban-Chmiel R, Dec M, Stęgierska D, Wernicki A. The use of MALDI-TOF mass spectrometry for rapid identification of Mannheimia haemolytica. J Vet Med Sci 2016; 78:1339-42. [PMID: 27109070 PMCID: PMC5053938 DOI: 10.1292/jvms.16-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mannheimia haemolytica is the most important bacterial pathogen isolated
from cases of Bovine Respiratory Disease (BRD). Routine identification of these bacteria
is usually performed using phenotypic methods. Our study showed that MALDI-TOF MS is a
reliable alternative to these methods. All of the strains analyzed were identified as
M. haemolytica. The identification results were compared to those
obtained using conventional methods commonly used in microbiological diagnostics, based on
detection and analysis of biochemical properties of microorganisms. The degree of
agreement between the two methods for identifying M. haemolytica was
100%.
Collapse
Affiliation(s)
- Andrzej Puchalski
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | | | | | | | | |
Collapse
|
8
|
Jackson AE. In this issue - January/February 2014. Aust Vet J 2014. [DOI: 10.1111/avj.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|