1
|
Banci KRDS, Guimarães M, Siqueira LHC, Muscat E, Sazima I, Marques OAV. Body shape and diet reflect arboreality degree of five congeneric snakes sympatric in the Atlantic forest. Biotropica 2022. [DOI: 10.1111/btp.13107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Murilo Guimarães
- Departamento de Zoologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | | - Edelcio Muscat
- Projeto Dacnis, São Francisco Xavier and Ubatuba Ubatuba Brazil
| | - Ivan Sazima
- Projeto Dacnis, São Francisco Xavier and Ubatuba Ubatuba Brazil
- Museu de Biodiversidade Biológica, Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| | | |
Collapse
|
2
|
Dang NX, Wang JS, Liang J, Jiang DC, Liu J, Wang L, Li JT. The specialisation of the third metacarpal and hand in arboreal frogs: Adaptation for arboreal habitat? ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ning-Xin Dang
- College of Life Sciences; Sichuan University; Chengdu China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- Southeast Asia Biodiversity Research Institute; Chinese Academy of Sciences; Yezin Nay Pyi Taw Myanmar
| | - Ji-Shan Wang
- China Forest Exploration & Design Institute in Kunming; State Forestry Administration P.R.China; Yunnan China
| | - Jin Liang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - De-Chun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Jun Liu
- College of Life Sciences; Sichuan University; Chengdu China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Li Wang
- College of Life Sciences; Sichuan University; Chengdu China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
- Southeast Asia Biodiversity Research Institute; Chinese Academy of Sciences; Yezin Nay Pyi Taw Myanmar
| |
Collapse
|
3
|
Venomics: integrative venom proteomics and beyond*. Biochem J 2017; 474:611-634. [DOI: 10.1042/bcj20160577] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023]
Abstract
Venoms are integrated phenotypes that evolved independently in, and are used for predatory and defensive purposes by, a wide phylogenetic range of organisms. The same principles that contribute to the evolutionary success of venoms, contribute to making the study of venoms of great interest in such diverse fields as evolutionary ecology and biotechnology. Evolution is profoundly contingent, and nature also reinvents itself continuosly. Changes in a complex phenotypic trait, such as venom, reflect the influences of prior evolutionary history, chance events, and selection. Reconstructing the natural history of venoms, particularly those of snakes, which will be dealt with in more detail in this review, requires the integration of different levels of knowledge into a meaningful and comprehensive evolutionary framework for separating stochastic changes from adaptive evolution. The application of omics technologies and other disciplines have contributed to a qualitative and quantitative advance in the road map towards this goal. In this review we will make a foray into the world of animal venoms, discuss synergies and complementarities of the different approaches used in their study, and identify current bottlenecks that prevent inferring the evolutionary mechanisms and ecological constraints that molded snake venoms to their present-day variability landscape.
Collapse
|
4
|
Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, Pérez A, Rodriguez Y, Lomonte B, Calvete JJ. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics 2016; 152:1-12. [PMID: 27777178 DOI: 10.1016/j.jprot.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 01/17/2023]
Abstract
Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP-rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA2-rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. SIGNIFICANCE Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus.
Collapse
Affiliation(s)
- Davinia Pla
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel E Acevedo
- Centro de Estudios Conservacionistas, Centro de Datos para la Conservacion, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Quetzal Dwyer
- Parque Reptilandia, Platanillo between Dominical & San Isidro, 8000 Dominical, Puntarenas, Costa Rica
| | - Jordi Durban
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Alicia Pérez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Yania Rodriguez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|