1
|
Liu Q, Zhang H, Huang X. Strong Linkage Between Symbiotic Bacterial Community and Host Age and Morph in a Hemipteran Social Insect. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02114-5. [PMID: 36138209 DOI: 10.1007/s00248-022-02114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The relationships between symbionts and insects are complex, and symbionts usually have diverse ecological and evolutionary effects on their hosts. The phloem sap-sucking aphids are good models to study the interactions between insects and symbiotic microorganisms. Although aphids usually exhibit remarkable life cycle complexity, most previous studies on symbiotic diversity sampled only apterous viviparous adult females or very few morphs. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the symbiotic bacterial communities of eleven morphs or developmental stages of the social aphid Pseudoregma bambucicola. We found there were significant differences in bacterial composition in response to different morphs and developmental stages, and for the first time, we revealed male aphids hosted very different symbiotic composition featured with low abundance of dominant symbionts but high diversity of total symbionts. The relative abundance of Pectobacterium showed relatively stable across different types of samples, while that of Wolbachia fluctuated greatly, indicating the former may have a consistent function in this species and the latter may provide specific function for certain morphs or developmental stages. Our study presents new evidence of complexity of symbiotic associations and indicates strong linkage between symbiotic bacterial community and host age and morph.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Csorba AB, Fora CG, Bálint J, Felföldi T, Szabó A, Máthé I, Loxdale HD, Kentelky E, Nyárádi II, Balog A. Endosymbiotic Bacterial Diversity of Corn Leaf Aphid, Rhopalosiphum maidis Fitch (Hemiptera: Aphididae) Associated with Maize Management Systems. Microorganisms 2022; 10:microorganisms10050939. [PMID: 35630383 PMCID: PMC9145372 DOI: 10.3390/microorganisms10050939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, different maize fields cultivated under different management systems were sampled to test corn leaf aphid, Rhopalosiphum maidis, populations in terms of total and endosymbiotic bacterial diversity. Corn leaf aphid natural populations were collected from traditionally managed maize fields grown under high agricultural and natural landscape diversity as well as conventionally treated high-input agricultural fields grown in monoculture and with fertilizers use, hence with low natural landscape diversity. Total bacterial community assessment by DNA sequencing was performed using the Illumina MiSeq platform. In total, 365 bacterial genera were identified and 6 endosymbiont taxa. A high abundance of the primary endosymbiont Buchnera and secondary symbionts Serratia and Wolbachia were detected in all maize crops. Their frequency was found to be correlated with the maize management system used, probably with fertilizer input. Three other facultative endosymbionts (“Candidatus Hamiltonella”, an uncultured Rickettsiales genus, and Spiroplasma) were also recorded at different frequencies under the two management regimes. Principal components analyses revealed that the relative contribution of the obligate and dominant symbiont Buchnera to the aphid endosymbiotic bacterial community was 72%, whereas for the managed system this was only 16.3%. When facultative symbionts alone were considered, the effect of management system revealed a DNA diversity of 23.3%.
Collapse
Affiliation(s)
- Artúr Botond Csorba
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Ciprian George Fora
- Faculty of Horticulture and Forestry, Banat’s University of Agricultural Sciences and Veterinary Medicine King Michael I of Romania from Timișoara, Calea Aradului 119, 300645 Timișoara, Romania
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| | - János Bálint
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary;
| | - Attila Szabó
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart 756-51 Hjelms Väg 9, 750 07 Uppsala, Sweden;
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Hugh D. Loxdale
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK;
| | - Endre Kentelky
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Imre-István Nyárádi
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| | - Adalbert Balog
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| |
Collapse
|
3
|
Xu S, Jiang L, Qiao G, Chen J. The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. MICROBIAL ECOLOGY 2020; 79:971-984. [PMID: 31802184 PMCID: PMC7198476 DOI: 10.1007/s00248-019-01435-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME JOURNAL 2018; 12:898-908. [PMID: 29362506 DOI: 10.1038/s41396-017-0024-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Symbiotic interactions between organisms create new ecological niches. For example, many insects survive on plant-sap with the aid of maternally transmitted bacterial symbionts that provision essential nutrients lacking in this diet. Symbiotic partners often enter a long-term relationship in which the co-evolutionary fate of lineages is interdependent. Obligate symbionts that are strictly maternally transmitted experience genetic drift and genome degradation, compromising symbiont function and reducing host fitness unless hosts can compensate for these deficits. One evolutionary solution is the acquisition of a novel symbiont with a functionally intact genome. Whereas almost all aphids host the anciently acquired bacterial endosymbiont Buchnera aphidicola (Gammaproteobacteria), Geopemphigus species have lost Buchnera and instead contain a maternally transmitted symbiont closely related to several known insect symbionts from the bacterial phylum Bacteroidetes. A complete genome sequence shows the symbiont has lost many ancestral genes, resulting in a genome size intermediate between that of free-living and symbiotic Bacteroidetes. The Geopemphigus symbiont retains biosynthetic pathways for amino acids and vitamins, as in Buchnera and other insect symbionts. This case of evolutionary replacement of Buchnera provides an opportunity to further understand the evolution and functional genomics of symbiosis.
Collapse
|
5
|
Szklarzewicz T, Michalik A. Transovarial Transmission of Symbionts in Insects. Results Probl Cell Differ 2017; 63:43-67. [PMID: 28779313 DOI: 10.1007/978-3-319-60855-6_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many insects, on account of their unbalanced diet, live in obligate symbiotic associations with microorganisms (bacteria or yeast-like symbionts), which provide them with substances missing in the food they consume. In the body of host insect, symbiotic microorganisms may occur intracellularly (e.g., in specialized cells of mesodermal origin termed bacteriocytes, in fat body cells, in midgut epithelium) or extracellularly (e.g., in hemolymph, in midgut lumen). As a rule, symbionts are vertically transmitted to the next generation. In most insects, symbiotic microorganisms are transferred from mother to offspring transovarially within female germ cells. The results of numerous ultrastructural and molecular studies on symbiotic systems in different groups of insects have shown that they have a large diversity of symbiotic microorganisms and different strategies of their transmission from one generation to the next. This chapter reviews the modes of transovarial transmission of symbionts between generations in insects.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|