1
|
Buchtova T, Lukac D, Skrott Z, Chroma K, Bartek J, Mistrik M. Drug-Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics. Int J Mol Sci 2023; 24:ijms24032885. [PMID: 36769206 PMCID: PMC9917508 DOI: 10.3390/ijms24032885] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) is an easily accessible and affordable Marijuana (Cannabis sativa L.) plant derivative with an extensive history of medical use spanning thousands of years. Interest in the therapeutic potential of CBD has increased in recent years, including its anti-tumour properties in various cancer models. In addition to the direct anticancer effects of CBD, preclinical research on numerous cannabinoids, including CBD, has highlighted their potential use in: (i) attenuating chemotherapy-induced adverse effects and (ii) enhancing the efficacy of some anticancer drugs. Therefore, CBD is gaining popularity as a supportive therapy during cancer treatment, often in combination with standard-of-care cancer chemotherapeutics. However, CBD is a biologically active substance that modulates various cellular targets, thereby possibly resulting in unpredictable outcomes, especially in combinations with other medications and therapeutic modalities. In this review, we summarize the current knowledge of CBD interactions with selected anticancer chemotherapeutics, discuss the emerging mechanistic basis for the observed biological effects, and highlight both the potential benefits and risks of such combined treatments. Apart from the experimental and preclinical results, we also indicate the planned or ongoing clinical trials aiming to evaluate the impact of CBD combinations in oncology. The results of these and future trials are essential to provide better guidance for oncologists to judge the benefit-versus-risk ratio of these exciting treatment strategies. We hope that our present overview of this rapidly advancing field of biomedicine will inspire more preclinical and clinical studies to further our understanding of the underlying biology and optimize the benefits for cancer patients.
Collapse
Affiliation(s)
- Tereza Buchtova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77 147 Olomouc, Czech Republic
| | - David Lukac
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77 147 Olomouc, Czech Republic
| | - Zdenek Skrott
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77 147 Olomouc, Czech Republic
| | - Katarina Chroma
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77 147 Olomouc, Czech Republic
| | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77 147 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
2
|
Klausz K, Kellner C, Gehlert CL, Krohn S, Wilcken H, Floerkemeier I, Günther A, Bauerschlag DO, Clement B, Gramatzki M, Peipp M. The Novel Dual Topoisomerase Inhibitor P8-D6 Shows Anti-myeloma Activity In Vitro and In Vivo. Mol Cancer Ther 2021; 21:70-78. [PMID: 34725192 DOI: 10.1158/1535-7163.mct-21-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
P8-D6 is a novel dual inhibitor of human topoisomerase I (TOP1) and II (TOP2) with broad pro-apoptotic antitumor activity. NCI-60 screening revealed markedly improved cytotoxicity of P8-D6 against solid and leukemia cell lines compared with other single and dual topoisomerase inhibitors, for example, irinotecan, doxorubicin, or pyrazoloacridine. In this study, we investigated the capacity of P8-D6 to inhibit myeloma cell growth in vitro and in vivo Growth inhibition assays demonstrated significant anti-myeloma effects against different myeloma cell lines with IC50 values in the low nanomolar range. Freshly isolated plasma cells of patients with multiple myeloma were killed by P8-D6 with similar doses. P8-D6 activated caspase 3/7 and induced significant apoptosis of myeloma cells. Supportive effects of bone marrow stromal cells on IL6-dependent INA-6 myeloma cells were abrogated by P8-D6 and apoptosis occurred in a time- and dose-dependent manner. Of note, healthy donor peripheral blood mononuclear cells and human umbilical vein endothelial cells were not affected at concentrations toxic for malignant plasma cells. Treatment of myeloma xenografts in immunodeficient SCID/beige mice by intravenous and, notably, also oral application of P8-D6 markedly inhibited tumor growths, and significantly prolonged survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany.
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Hauke Wilcken
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Inken Floerkemeier
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Günther
- Helios Clinics Schwerin, Hematology/Oncology/Stem Cell Transplantation, Schwerin, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
3
|
Singh M, Sharma P, Singh PK, Singh TG, Saini B. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer. Mini Rev Med Chem 2021; 20:942-957. [PMID: 32048967 DOI: 10.2174/1389557520666200212104742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.
Collapse
Affiliation(s)
- Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari 07100, Italy
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
4
|
Rodríguez-Nogales C, Noguera R, Couvreur P, Blanco-Prieto MJ. Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. J Pharmacol Exp Ther 2019; 370:625-635. [DOI: 10.1124/jpet.118.255067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
|
5
|
A novel nanocomposite based on gold nanoparticles loaded on acetylene black for electrochemical sensing of the anticancer drug topotecan in the presence of high concentration of uric acid. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS. Targeting Hypoxia-Inducible Factors for Antiangiogenic Cancer Therapy. Trends Cancer 2017; 3:529-541. [PMID: 28718406 DOI: 10.1016/j.trecan.2017.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
Hypoxia (low O2) is a pathobiological hallmark of solid cancers, resulting from the imbalance between cellular O2 consumption and availability. Hypoxic cancer cells (CCs) stimulate blood vessel sprouting (angiogenesis), aimed at restoring O2 delivery to the expanding tumor masses through the activation of a transcriptional program mediated by hypoxia-inducible factors (HIFs). Here, we review recent data suggesting that the efficacy of antiangiogenic (AA) therapies is limited in some circumstances by HIF-dependent compensatory responses to increased intratumoral hypoxia. In lieu of this evidence, we discuss the potential of targeting HIFs as a strategy to overcome these instances of AA therapy resistance.
Collapse
Affiliation(s)
- Sergio Rey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Luana Schito
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada; Radiation Oncology, University of Toronto, ON, Canada
| | | | - Robert S Kerbel
- Radiation Oncology, University of Toronto, ON, Canada; Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
7
|
Emerging Cytotoxic Alkaloids in the Battle against Cancer: Overview of Molecular Mechanisms. Molecules 2017; 22:molecules22020250. [PMID: 28208712 PMCID: PMC6155614 DOI: 10.3390/molecules22020250] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022] Open
Abstract
Considered as the second deadliest disease globally, cancer has captured the attention of researchers who have been trying with perseverance to decode its hidden aspects, to find new prognosis methods, and to develop better and more effective treatments. Plants have continuously offered an excess of unique secondary metabolites with remarkable biological applications. Alkaloids, one of the most abundant metabolites, constitute a large conglomerate of basic heterocyclic nitrogen-containing natural compounds which are normally produced by plants as toxic substances. Out of the 27,000 different alkaloids, more than 17,000 have displayed diversified pharmacological properties including anticancer activities. These metabolites have been classified either according to their chemical structures or their taxonomic origin. None of the researched alkaloids have been classified according to their molecular mechanism of action against cancer. In fact, only a fraction of the tremendous number of anticancer alkaloids has been copiously mentioned in journals. Here, we aim to provide a summary of the literature on some of the promising anticancer alkaloids that have not been well discussed previously and to classify them according to their molecular mechanisms of action. This review will provide a better understanding of the anticancer mechanisms of these promising natural products that are a rich reservoir for drug discovery.
Collapse
|
8
|
Top M, Er O, Congur G, Erdem A, Lambrecht FY. Intracellular uptake study of radiolabeled anticancer drug and impedimetric detection of its interaction with DNA. Talanta 2016; 160:157-163. [DOI: 10.1016/j.talanta.2016.06.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
|
9
|
Roberts JK, Birg AV, Lin T, Daryani VM, Panetta JC, Broniscer A, Robinson GW, Gajjar AJ, Stewart CF. Population Pharmacokinetics of Oral Topotecan in Infants and Very Young Children with Brain Tumors Demonstrates a Role of ABCG2 rs4148157 on the Absorption Rate Constant. ACTA ACUST UNITED AC 2016; 44:1116-22. [PMID: 27052877 DOI: 10.1124/dmd.115.068676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/05/2016] [Indexed: 01/21/2023]
Abstract
For infants and very young children with brain tumors, chemotherapy after surgical resection is the main treatment due to neurologic and neuroendocrine adverse effects from whole brain irradiation. Topotecan, an anticancer drug with antitumor activity against pediatric brain tumors, can be given intravenous or orally. However, high interpatient variability in oral drug bioavailability is common in children less than 3 years old. Therefore, this study aimed to determine the population pharmacokinetics of oral topotecan in infants and very young children, specifically evaluating the effects of age and ABCG2 and ABCB1 on the absorption rate constant (Ka), as well as other covariate effects on all pharmacokinetic parameters. A nonlinear mixed effects model was implemented in Monolix 4.3.2 (Lixoft, Orsay, France). A one-compartment model with first-order input and first-order elimination was found to adequately characterize topotecan lactone concentrations with population estimates as [mean (S.E.)]; Ka = 0.61 (0.11) h(-1), apparent volume of distribution (V/F) = 40.2 (7.0) l, and apparent clearance (CL/F) = 40.0 (2.9) l/h. After including the body surface area in the V/F and CL/F as a power model centered on the population median, the ABCG2 rs4148157 allele was found to play a significant role in the value of Ka Patients homozygous or heterozygous for G>A demonstrated a Ka value 2-fold higher than their GG counterparts, complemented with a 2-fold higher maximal concentration as well. These results demonstrate a possible role for the ABCG2 rs4148157 allele in the pharmacokinetics of oral topotecan in infants and very young children, and warrants further investigation.
Collapse
Affiliation(s)
- Jessica K Roberts
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna V Birg
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tong Lin
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vinay M Daryani
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John C Panetta
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alberto Broniscer
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giles W Robinson
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amar J Gajjar
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences (J.K.R., A.V.B., V.M.D., J.C.P., C.F.S.), Department of Biostatistics (T.L.), and Department of Oncology (A.B., G.W.R., A.J.G.), St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|