1
|
Han L, Cui Y, Pan Y, Chen R, Jiao Z. External evaluation of tacrolimus population pharmacokinetic models in adult lung transplant patients: How to enhance the predictive ability of the model? Int Immunopharmacol 2024; 143:113225. [PMID: 39353393 DOI: 10.1016/j.intimp.2024.113225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Tacrolimus is the cornerstone of current immunosuppressive strategies after lung transplantation. However, its narrow therapeutic range and considerable pharmacokinetic variability pose challenges for individualized treatment. Several tacrolimus population pharmacokinetic (popPK) models have been developed for precision dosing in adult lung transplant patients. However, their applicability across different clinical settings remains uncertain. The aim of this study was to evaluate the external predictability of these models and identify influential factors. METHODS Published models were systematically retrieved and assessed based on an external dataset of 39 patients (1240 tacrolimus trough concentrations) using three approaches: (1) prediction-based diagnosis using dosing records and patient characteristics; (2) simulation-based diagnosis, with prediction- and variability-corrected visual predictive checks (pvcVPC) and normalized prediction distribution error tests (NPDE); and (3) Bayesian forecasting using one to four observations for posterior predictions. We also investigated the impact of model structure and covariates on predictability. RESULTS The predictive performance of six published models was externally evaluated, but none demonstrated satisfactory accuracy in prediction- and simulation-based diagnosis. Bayesian forecasting yielded satisfactory results with only one prior observation and optimal predictive performance with 2-3 priors for all included models. The structural model parameterized on plasma tacrolimus concentration outperformed others. Significant correlations were observed between prediction-error and daily tacrolimus dose, postoperative day, and voriconazole co-administration. CONCLUSIONS The overall predictive performance of all published models was unsatisfactory, making direct extrapolation inappropriate. However, Bayesian forecasting significantly improves predictive performance. Utilizing plasma tacrolimus concentration for parameter estimation can improve the predictive ability of tacrolimus popPK models.
Collapse
Affiliation(s)
- Lu Han
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifan Cui
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yan Pan
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rui Chen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Karkhanis AV, Harwood MD, Stader F, Bois FY, Neuhoff S. Applications of the Cholesterol Metabolite, 4β-Hydroxycholesterol, as a Sensitive Endogenous Biomarker for Hepatic CYP3A Activity Evaluated within a PBPK Framework. Pharmaceutics 2024; 16:1284. [PMID: 39458613 PMCID: PMC11510160 DOI: 10.3390/pharmaceutics16101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Plasma levels of 4β-hydroxycholesterol (4β-OHC), a CYP3A-specific metabolite of cholesterol, are elevated after administration of CYP3A inducers like rifampicin and carbamazepine. To simulate such plasma 4β-OHC increase, we developed a physiologically based pharmacokinetic (PBPK) model of cholesterol and 4β-OHC in the Simcyp PBPK Simulator (Version 23, Certara UK Ltd.) using a middle-out approach. Methods: Relevant physicochemical properties and metabolic pathway data for CYP3A and CYP27A1 was incorporated in the model. Results: The PBPK model recovered the observed baseline plasma 4β-OHC levels in Caucasian, Japanese, and Korean populations. The model also captured the higher baseline 4β-OHC levels in females compared to males, indicative of sex-specific differences in CYP3A abundance. More importantly, the model recapitulated the increased 4β-OHC plasma levels after multiple-dose rifampicin treatment in six independent studies, indicative of hepatic CYP3A induction. The verified model also captured the altered 4β-OHC levels in CYP3A4/5 polymorphic populations and with other CYP3A inducers. The model is limited by scant data on relative contributions of CYP3A and CYP27A1 pathways and does not account for regulatory mechanisms that control plasma cholesterol and 4β-OHC levels. Conclusion: This study provides a quantitative fit-for-purpose and framed-for-future modelling framework for an endogenous biomarker to evaluate the DDI risk with hepatic CYP3A induction.
Collapse
Affiliation(s)
- Aneesh V. Karkhanis
- Certara UK Limited, Certara Predictive Technologies, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; (M.D.H.); (F.S.); (F.Y.B.); (S.N.)
| | | | | | | | | |
Collapse
|
3
|
Mao J, Zeng F, Qin W, Hu M, Xu L, Cheng F, Zhong M, Zhang Y. A joint population pharmacokinetic model to assess the high variability of whole-blood and intracellular tacrolimus in early adult renal transplant recipients. Int Immunopharmacol 2024; 137:112535. [PMID: 38908078 DOI: 10.1016/j.intimp.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Tacrolimus (TAC) has high pharmacokinetic (PK) variability during the early transplantation period. The relationships between whole-blood and intracellular TAC concentrations and clinical outcomes remain controversial. This study identifies the factors affecting the PK variability of TAC and characterizes the relationships between whole-blood and intracellular TAC concentrations. Data regarding whole-blood TAC concentrations of 1,787 samples from 215 renal transplant recipients (<90 days postoperative) across two centers and intracellular TAC concentrations (648 samples) digitized from previous studies were analyzed using nonlinear mixed-effects modeling. The effects of potential covariates were screened, and the distribution of whole-blood to intracellular TAC concentration ratios (RWB:IC) was estimated. The final model was evaluated using bootstrap, goodness of fit, and prediction-corrected visual predictive checks. The optimal dosing regimens and target ranges for each type of immune cell subsets were determined using Monte Carlo simulations. A two-compartment model adequately described the data, and the estimated mean TAC CL/F was 23.6 L·h-1 (relative standard error: 11.5 %). The hematocrit level, CYP3A5*3 carrier status, co-administration with Wuzhi capsules, and tapering prednisolone dose may contribute to the high variability of TAC PK variability during the early post-transplant period. The estimated RWB:IC of all TAC concentrations in peripheral blood mononuclear cells (PBMCs) was 4940, and inter-center variability of PBMCs was observed. The simulated TAC target range in PBMCs was 20.2-85.9 pg·million cells-1. Inter-center variability in intracellular concentrations should be taken into account in further analyses. TAC dosage adjustments can be guided based on PK/PD variability and simulated intracellular concentrations.
Collapse
Affiliation(s)
- Junjun Mao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Weiwei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Luyang Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China.
| |
Collapse
|
4
|
Hirano R, Yokokawa A, Furihata T, Shibasaki H. Plasma 6β-hydroxycortisol to cortisol ratio as a less invasive cytochrome P450 3A phenotyping method. Br J Clin Pharmacol 2023. [PMID: 38102865 DOI: 10.1111/bcp.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
AIM A less invasive evaluation method of cytochrome P450 3A (CYP3A) activity provides an important tool for personalized medicine. We aimed to clarify the usefulness of the plasma 6β-hydroxycortisol to cortisol concentration (6β-OHF/F) ratio as a minimally invasive CYP3A phenotyping method. METHODS Plasma 6β-OHF and cortisol concentrations were measured via liquid chromatography/tandem mass spectrometry. The plasma 6β-OHF/F ratio was compared with 6β-hydroxylation clearance of endogenous cortisol (CLm(6β) ; which we previously developed as an index of CYP3A activity) before, during and after oral contraceptive administration in 3 healthy women. The plasma 6β-OHF/F ratio was observed during oral clarithromycin administration. The plasma 6β-OHF/F ratio was also measured in 39 healthy participants. RESULTS The plasma 6β-OHF/F ratio in 3 healthy women on Day 21 of starting oral contraceptive administration decreased by 39, 49 and 61% compared with Day 0. These values were similar to CLm(6β) values (43, 54 and 59%, respectively). Plasma 6β-OHF/F ratio and CLm(6β) exhibited a good correlation (r = .9053). The 6β-OHF/F ratio decreased from 0.00921 to 0.00577 only 3 h following clarithromycin administration. The plasma 6β-OHF/F ratio ranged 0.00565-0.01556 in 39 healthy participants. CONCLUSION Based on its close relationship with CLm(6β) and its decrease upon inhibition by clarithromycin, the plasma 6β-OHF/F ratio serves as an index of CYP3A activity. Using this minimally invasive index, we can identify patients with extremely low CYP3A activity before treatment initiation and optimize the initial drug dose, thereby mitigating the risk of severe adverse reactions.
Collapse
Affiliation(s)
- Ryohei Hirano
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akitomo Yokokawa
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiromi Shibasaki
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
5
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
6
|
SHIBASAKI H, YOKOKAWA A, FURIHATA T. Influence of Anticoagulants and Storage Conditions During Blood Sample Collection on Determination of the 6β-hydroxycortisol/cortisol Ratio by LC-MS/MS. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiromi SHIBASAKI
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Akitomo YOKOKAWA
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Tomomi FURIHATA
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Eide Kvitne K, Hole K, Krogstad V, Wollmann BM, Wegler C, Johnson LK, Hertel JK, Artursson P, Karlsson C, Andersson S, Andersson TB, Sandbu R, Hjelmesæth J, Skovlund E, Christensen H, Jansson-Löfmark R, Åsberg A, Molden E, Robertsen I. Correlations between 4β-hydroxycholesterol and hepatic and intestinal CYP3A4: protein expression, microsomal ex vivo activity, and in vivo activity in patients with a wide body weight range. Eur J Clin Pharmacol 2022; 78:1289-1299. [PMID: 35648149 PMCID: PMC9283167 DOI: 10.1007/s00228-022-03336-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4β-hydroxycholesterol (4βOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4βOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4βOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS 4βOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4βOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION These findings suggest that 4βOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4βOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION Clinical. TRIALS gov identifier: NCT02386917.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Line K Johnson
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jens K Hertel
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Karlsson
- Clinical Metabolism, Cardiovascular, Renal and Metabolism (CVRM), Late-Stage Development, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Deparment of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
8
|
The utility of endogenous glycochenodeoxycholate-3-sulfate and 4β-hydroxycholesterol to evaluate the hepatic disposition of atorvastatin in rats. Asian J Pharm Sci 2021; 16:519-529. [PMID: 34703500 PMCID: PMC8520055 DOI: 10.1016/j.ajps.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/06/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022] Open
Abstract
The liver is an important organ for drugs disposition, and thus how to accurately evaluate hepatic clearance is essential for proper drug dosing. However, there are many limitations in drug dosage adjustment based on liver function and pharmacogenomic testing. In this study, we evaluated the ability of endogenous glycochenodeoxycholate-3-sulfate (GCDCA-S) and 4β-hydroxycholesterol (4β-HC) plasma levels to evaluate organic anion-transporting polypeptide (Oatps)-mediated hepatic uptake and Cyp3a-meidated metabolism of atorvastatin (ATV) in rats. The concentration of ATV and its metabolites, 2-OH ATV and 4-OH ATV, was markedly increased after a single injection of rifampicin (RIF), an inhibitor of Oatps. Concurrently, plasma GCDCA-S levels were also elevated. After a single injection of the Cyp3a inhibitor ketoconazole (KTZ), plasma ATV concentrations were significantly increased and 2-OH ATV concentrations were decreased, consistent with the metabolism of ATV by Cyp3a. However, plasma 4β-HC was not affected by KTZ treatment despite it being a Cyp3a metabolite of cholesterol. After repeated oral administration of RIF, plasma concentrations of ATV, 2-OH ATV and 4-OH ATV were markedly increased and the hepatic uptake ratio of ATV and GCDCA-S was decreased. KTZ did not affect plasma concentrations of ATV, 2-OH ATV and 4-OH ATV, but significantly decreased the metabolic ratio of total and 4-OH ATV. However, the plasma level and hepatic metabolism of 4β-HC were not changed by KTZ. The inhibition of hepatic uptake of GCDCA-S by RIF was fully reversed after a 7-d washout of RIF. Plasma concentration and hepatic uptake ratio of GCDCA-S were correlated with the plasma level and hepatic uptake of ATV in rats with ANIT-induced liver injury, respectively. These results demonstrate that plasma GCDCA-S is a sensitive probe for the assessment of Oatps-mediated hepatic uptake of ATV. However, Cyp3a-mediated metabolism of ATV was not predicted by plasma 4β-HC levels in rats.
Collapse
|
9
|
Lütjohann D, Stellaard F, Kerksiek A, Lötsch J, Oertel BG. Serum 4β-hydroxycholesterol increases during fluconazole treatment. Eur J Clin Pharmacol 2020; 77:659-669. [PMID: 33201347 PMCID: PMC8032583 DOI: 10.1007/s00228-020-03041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 11/02/2022]
Abstract
PURPOSE The antifungal drugs ketoconazole and itraconazole reduce serum concentrations of 4β-hydroxycholesterol, which is a validated marker for hepatic cytochrome P450 (CYP) 3A4 activity. We tested the effect of another antifungal triazole agent, fluconazole, on serum concentrations of different sterols and oxysterols within the cholesterol metabolism to see if this inhibitory reaction is a general side effect of azole antifungal agents. METHODS In a prospective, double-blind, placebo-controlled, two-way crossover design, we studied 17 healthy subjects (nine men, eight women) who received 400 mg fluconazole or placebo daily for 8 days. On day 1 before treatment and on day 8 after the last dose, fasting blood samples were collected. Serum cholesterol precursors and oxysterols were measured by gas chromatography-mass spectrometry-selected ion monitoring and expressed as the ratio to cholesterol (R_sterol). RESULTS Under fluconazole treatment, serum R_lanosterol and R_24,25-dihydrolanosterol increased significantly without affecting serum cholesterol or metabolic downstream markers of hepatic cholesterol synthesis. Serum R_4β-, R_24S-, and R_27-hydroxycholesterol increased significantly. CONCLUSION Fluconazole inhibits the 14α-demethylation of lanosterol and 24,25-dihydrolanosterol, regulated by CYP51A1, without reduction of total cholesterol synthesis. The increased serum level of R_4β-hydroxycholesterol under fluconazole treatment is in contrast to the reductions observed under ketoconazole and itraconazole treatments. The question, whether this increase is caused by induction of CYP3A4 or by inhibition of the catabolism of 4β-hydroxycholesterol, must be answered by mechanistic in vitro and in vivo studies comparing effects of various azole antifungal agents on hepatic CYP3A4 activity.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Bruno G Oertel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
10
|
Cai X, Song H, Jiao Z, Yang H, Zhu M, Wang C, Wei D, Shi L, Wu B, Chen J. Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients. Eur J Pharm Sci 2020; 152:105448. [PMID: 32621968 DOI: 10.1016/j.ejps.2020.105448] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023]
Abstract
We aimed to (i) develop a population pharmacokinetic model of tacrolimus in Chinese lung transplant recipients and (ii) propose model-based dosing regimens for individualized treatment. We obtained 807 tacrolimus steady-state whole blood concentrations from 52 lung transplant patients and genotyped CYP3A5*3. Population pharmacokinetic analysis was performed using nonlinear mixed-effects modeling. Monte Carlo simulations were employed to determine the initial dosing regimens. Tacrolimus pharmacokinetics was described by a one-compartment model with first-order absorption and elimination processes. In CYP3A5*3/*3 70-kg patients with 30% hematocrit and voriconazole-free therapy, the mean estimated apparent clearance was 13.1 l h-1 with 20.1% between-subject variability, which was lower than that in Caucasian lung transplant patients (17.5-36.5 l h-1). Hematocrit, postoperative days, tacrolimus daily dose, voriconazole concomitant therapy, and CYP3A5*3 genotype were identified as significant covariates for tacrolimus clearance. To achieve target trough concentration (10-15 ng ml-1) on the 8th day post-transplant, a higher initial dosage than the current regimen of 0.04 mg kg-1 every 12 h is recommended for CYP3A5*1/*3 patients without voriconazole concomitant therapy. Given the nonlinear kinetics of tacrolimus and large variability, population pharmacokinetic model should be combined with therapeutic drug monitoring to optimize individualized therapy.
Collapse
Affiliation(s)
- Xiaojun Cai
- Department of Pharmacy, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Huizhu Song
- Department of Pharmacy, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Hang Yang
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Min Zhu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengyu Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Dong Wei
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Lingzhi Shi
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Bo Wu
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China.
| | - Jingyu Chen
- Lung Transplant Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, PR China.
| |
Collapse
|
11
|
Cai X, Li R, Sheng C, Tao Y, Zhang Q, Zhang X, Li J, Shen C, Qiu X, Wang Z, Jiao Z. Systematic external evaluation of published population pharmacokinetic models for tacrolimus in adult liver transplant recipients. Eur J Pharm Sci 2020; 145:105237. [DOI: 10.1016/j.ejps.2020.105237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
|
12
|
Gravel S, Chiasson JL, Gaudette F, Turgeon J, Michaud V. Use of 4β-Hydroxycholesterol Plasma Concentrations as an Endogenous Biomarker of CYP3A Activity: Clinical Validation in Individuals With Type 2 Diabetes. Clin Pharmacol Ther 2019; 106:831-840. [PMID: 31002385 DOI: 10.1002/cpt.1472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
The relevance of endogenous 4β-hydroxycholesterol (4β-OHC) plasma concentrations or of the 4β-OHC/total cholesterol concentration ratio (4β-OHC ratio) as surrogate markers of cytochrome P450 3A (CYP3A) activity was evaluated in individuals with (n = 38) or without (n = 35) type 2 diabetes (T2D). Midazolam was used as a comparator to validate exploratory measures of phenotypic CYP3A activity. Metabolic ratios of orally administered midazolam in nondiabetic and diabetic populations correlated significantly with 4β-OHC (rs = 0.64 and 0.48; P ≤ 0.003) and 4β-OHC ratio (rs = 0.69 and 0.46; P ≤ 0.003), respectively. Activity of CYP3A was lower in the T2D population compared with nondiabetic subjects; this decrease was reflected in 4β-OHC concentrations (24.33 vs. 12.58 ng/mL; P < 0.0001) and 4β-OHC ratio (0.13 vs. 0.09 (× 104 ); P < 0.0002). These results suggest that 4β-OHC should be considered as a valid, convenient, and easy to use endogenous biomarker of CYP3A activity in patients.
Collapse
Affiliation(s)
- Sophie Gravel
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.,CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean-Louis Chiasson
- CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,CHUM, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Université of Montréal, Montréal, Québec, Canada
| | - Fleur Gaudette
- CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jacques Turgeon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.,CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Veronique Michaud
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.,CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Gjestad C, Hole K, Haslemo T, Diczfalusy U, Molden E. Effect of Grapefruit Juice Intake on Serum Level of the Endogenous CYP3A4 Metabolite 4β-Hydroxycholesterol-an Interaction Study in Healthy Volunteers. AAPS JOURNAL 2019; 21:58. [PMID: 31020430 DOI: 10.1208/s12248-019-0330-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022]
Abstract
4β-Hydroxycholesterol (4βOHC) is an endogenous CYP3A4 metabolite. However, it is unclear whether circulating levels of 4βOHC may reflect hepatic CYP3A4 activity or both hepatic and intestinal enzyme activity. The aim of this study was to investigate the effect of grapefruit juice, regarded to be a selective intestinal CYP3A4 inhibitor, on serum 4βOHC levels in healthy volunteers. The participants (n = 22) consumed grapefruit juice twice daily for 3 weeks followed by a 2-week washout period. Blood samples for measurements of 4βOHC and the non-CYP3A4-derived oxysterols 24-hydroxycholesterol (24OHC) and 27-hydroxycholesterol (27OHC), as well as lathosterol and total cholesterol, were drawn on days 0, 7, 21, and 35. Median individual changes (ratios) in cholesterol-corrected 4βOHC levels from baseline to weeks 1, 3, and 5 were 0.94 (P = 0.2), 0.98 (P = 0.3), and 0.97 (P = 0.9), respectively. In comparison, median changes (ratios) in cholesterol-corrected levels of 24OHC at the same points were 1.01 (P = 0.6), 0.98 (P = 0.3), and 0.99 (P = 0.5), and of 27OHC 1.01 (P = 0.8), 0.97 (P = 0.5), and 0.99 (P = 0.2). Surprisingly, serum concentration of cholesterol was significantly reduced by approximately 5% after 1 week (P = 0.03), while median cholesterol-corrected levels of lathosterol increased significantly and persistently by approximately 15% during the whole 5-week period (P < 0.04). In conclusion, the present findings suggest that intestinal CYP3A4 is not relevant for the overall formation of 4βOHC in healthy volunteers. The fact that grapefruit juice altered cholesterol homeostasis should be further investigated.
Collapse
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway
| | - Ulf Diczfalusy
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, N-0319, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Penzak SR, Rojas-Fernandez C. 4β-Hydroxycholesterol as an Endogenous Biomarker for CYP3A Activity: Literature Review and Critical Evaluation. J Clin Pharmacol 2019; 59:611-624. [PMID: 30748026 DOI: 10.1002/jcph.1391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A number of cytochrome P450 (CYP)3A phenotyping probes have been used to characterize the drug interaction potential of new molecular entities; of these, midazolam has emerged as the gold standard. Recently, plasma 4β-hydroxycholesterol (4β-OHC), the metabolite of CYP3A-mediated cholesterol metabolism, has been championed as an endogenous biomarker for CYP3A, particularly during chronic conditions where CYP3A activity is altered by disease and in long-term treatment studies where midazolam administration is not optimal. Multiple studies in humans have shown that 4β-OHC can qualitatively differentiate among weak, moderate, and potent CYP3A induction when an inducer, typically rifampin, is administered for up to 2 weeks. Conversely, longer durations of CYP3A inhibitor administration (≥1 month) appear to be necessary to differentiate among weak, moderate, and potent CYP3A inhibitors. A number of studies have reported statistically significant linear relationships between 4β-OHC plasma concentrations (and 4β-OHC:cholesterol ratios) and midazolam clearance. However, sufficiently powered studies assessing the ability of 4β-OHC or 4β-OHC:cholesterol ratios to measure CYP3A activity (ie, predictive performance) have not been conducted to date. Additional limitations associated with 4β-OHC phenotyping include inability to detect acute changes in CYP3A activity, uncertainty with regard to its intestinal formation, ambiguity surrounding the role of CYP3A5 in its metabolism, and lack of clarity regarding the role of transporters in its disposition. As such, the data do not support the use of 4β-OHC or 4β-OHC:cholesterol ratios as an endogenous biomarker for CYP3A activity.
Collapse
Affiliation(s)
- Scott R Penzak
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | | |
Collapse
|
15
|
Wollmann BM, Syversen SW, Vistnes M, Lie E, Mehus LL, Molden E. Associations between Cytokine Levels and CYP3A4 Phenotype in Patients with Rheumatoid Arthritis. Drug Metab Dispos 2018; 46:1384-1389. [DOI: 10.1124/dmd.118.082065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
|
16
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. Gjestad et al. reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1624-1625. [PMID: 29749106 DOI: 10.1111/bcp.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Kuypers DRJ, Vanhove T. Kuypers and Vanhove reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1622-1623. [PMID: 29691891 DOI: 10.1111/bcp.13592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Population pharmacokinetic evaluation of ADV6209, an innovative oral solution of midazolam containing cyclodextrin. Eur J Pharm Sci 2018; 114:46-54. [DOI: 10.1016/j.ejps.2017.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022]
|
19
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. 4β-Hydroxycholesterol level significantly correlates with steady-state serum concentration of the CYP3A4 substrate quetiapine in psychiatric patients. Br J Clin Pharmacol 2017; 83:2398-2405. [PMID: 28585378 DOI: 10.1111/bcp.13341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/07/2017] [Accepted: 05/27/2017] [Indexed: 01/03/2023] Open
Abstract
AIM 4β-Hydroxycholesterol (4βOHC) is sensitive towards induction or inhibition of CYP3A4, but its potential usefulness as a dosing biomarker remains to be demonstrated. The aim of this study was to investigate the correlation between 4βOHC levels and steady-state concentrations (Css) of quetiapine, a CYP3A4 substrate with high presystemic metabolism, in psychiatric patients. METHODS Serum samples from 151 patients treated with quetiapine as immediate release (IR; n = 98) or slow release (XR; n = 53) tablets were included for analysis of 4βOHC. In all patients, Css of quetiapine had been measured at trough level, i.e. 10-14 and 17-25 h post-dosing for IR and XR tablets, respectively. Correlations between 4βOHC levels and dose-adjusted Css (C/D ratios) of quetiapine were tested by univariate (Spearman's) and multivariate (multiple linear regression) analyses. Gender, age (≥60 vs. <60 years) and tablet formulation were included as potential covariates in the multivariate analysis. RESULTS Correlations between 4βOHC levels and quetiapine C/D ratios were highly significant both for IR- and XR-treated patients (P < 0.0001). Estimated Spearman r values were -0.47 (95% confidence interval -0.62, -0.30) and -0.56 (-0.72, -0.33), respectively. The relationship between 4βOHC level and quetiapine C/D ratio was also significant in the multiple linear regression analysis (P < 0.001), including gender (P = 0.023) and age (P = 0.003) as significant covariates. CONCLUSIONS The present study shows that 4βOHC level is significantly correlated with steady-state concentration of quetiapine. This supports the potential usefulness of 4βOHC as a phenotype biomarker for individualized dosing of quetiapine and other drugs where systemic exposure is mainly determined by CYP3A4 metabolism.
Collapse
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Vanhove T, Hasan M, Annaert P, Oswald S, Kuypers DRJ. Pretransplant 4β-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. Br J Clin Pharmacol 2017; 83:2406-2415. [PMID: 28603840 DOI: 10.1111/bcp.13343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
AIMS The CYP3A metric 4β-hydroxycholesterol (4βOHC) has been shown to correlate with tacrolimus steady-state apparent oral clearance (CL/F). Recently, pretransplant 4βOHC was shown not to predict tacrolimus CL/F after transplantation in a cohort of renal recipients (n = 79). The goal of the current study was determine whether these findings could be validated in a substantially larger cohort. METHODS In a retrospective analysis of 279 renal recipients, tacrolimus trough concentrations (C0), daily dose, haematocrit and other relevant covariates were registered every day for the first 14 days after transplantation. 4βOHC and cholesterol were quantified on plasma collected immediately pretransplant using liquid chromatography tandem-mass spectrometry. Patients were genotyped for CYP3A5*1 and CYP3A4*22. RESULTS A total of 3551 tacrolimus C0 concentrations were registered. In a linear mixed model for the 14-day period, determinants of tacrolimus C0 were CYP3A5 genotype, haematocrit, age and weight (overall R2 = 0.179). Determinants of daily dose were CYP3A5 genotype, age, methylprednisolone dose, tacrolimus formulation, ALT and estimated glomerular filtration rate (overall R2 = 0.242). Considering each of the first 5 days separately, 4βOHC had a limited effect on tacrolimus C0 on day 3 only (-1.00 ng ml-1 per ln, P = 0.035) but not on any other day, and no effect on dose or C0/dose. During the first 5 days, haematocrit and age, which were previously established as determinants of tacrolimus disposition under steady-state conditions, never explained more than 17.7% of between-subject variability in tacrolimus C0/dose. CONCLUSIONS The CYP3A metric 4βOHC cannot be used to predict tacrolimus dose requirements in the first days after transplantation.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Mahmoud Hasan
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Hospital Greifswald, Greifswald, Germany
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Stefan Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Hospital Greifswald, Greifswald, Germany
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Størset E, Hole K, Midtvedt K, Bergan S, Molden E, Åsberg A. Response to: 'Response to: Bodyweight-adjustments introduce significant correlations between CYP3A metrics and tacrolimus clearance'. Br J Clin Pharmacol 2017; 83:1357-1358. [PMID: 28374426 DOI: 10.1111/bcp.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stein Bergan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Størset E, Hole K, Midtvedt K, Bergan S, Molden E, Åsberg A. The CYP3A biomarker 4β-hydroxycholesterol does not improve tacrolimus dose predictions early after kidney transplantation. Br J Clin Pharmacol 2017; 83:1457-1465. [PMID: 28146606 DOI: 10.1111/bcp.13248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/16/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Tacrolimus is a cornerstone in modern immunosuppressive therapy after kidney transplantation. Tacrolimus dosing is challenged by considerable pharmacokinetic variability, both between patients and over time after transplantation, partly due to variability in cytochrome P450 3A (CYP3A) activity. The aim of this study was to assess the value of the endogenous CYP3A marker 4β-hydroxycholesterol (4βOHC) for tacrolimus dose individualization early after kidney transplantation. METHODS Data were obtained from 79 adult kidney transplant recipients who contributed a total of 625 4βOHC measurements and 1999 tacrolimus whole blood concentrations during the first 2 months after transplantation. The relationships between 4βOHC levels and individual estimates of tacrolimus apparent plasma clearance (CL/Fplasma ) at different time points after transplantation were investigated using scatterplots and population pharmacokinetic modelling. RESULTS There was no significant correlation between pre-transplant 4βOHC levels and tacrolimus CL/Fplasma the first week (r = 0.19 [95% CI -0.03-0.40]) or between 4βOHC and tacrolimus CL/Fplasma 1 week (r = 0.20 [-0.11-0.47]), 4 weeks (r = 0.21 [-0.07-0.46]) or 2 months (r = 0.24 [-0.03-0.48]) after transplantation (P ≥ 0.06). In the population analysis, time-varying 4βOHC was not a statistically significant covariate on tacrolimus CL/Fplasma , neither in terms of absolute values (P = 0.11) nor in terms of changes from baseline (P = 0.17). 4βOHC values increased between 1 week and 2 months after transplantation (median change +57% [IQR +22-83%], P < 0.001), indicating increasing CYP3A activity. Contradictorily, tacrolimus CL/Fplasma decreased over the same period (median change -13% [IQR -3 to -26%], P < 0.001). CONCLUSIONS 4βOHC does not appear to have a clinical potential to improve individualization of tacrolimus doses early after kidney transplantation.
Collapse
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stein Bergan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
23
|
Vanhove T, Annaert P, Kuypers DRJ. Response to: 'Bodyweight-adjustments introduce significant correlations between CYP3A metrics and tacrolimus clearance'. Br J Clin Pharmacol 2017; 83:1353-1356. [PMID: 28168728 DOI: 10.1111/bcp.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Størset E, Hole K, Midtvedt K, Bergan S, Molden E, Åsberg A. Bodyweight-adjustments introduce significant correlations between CYP3A metrics and tacrolimus clearance. Br J Clin Pharmacol 2016; 83:1350-1352. [PMID: 28008657 DOI: 10.1111/bcp.13188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/13/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Elisabet Størset
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stein Bergan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
25
|
Hole K, Gjestad C, Heitmann KM, Haslemo T, Molden E, Bremer S. Impact of genetic and nongenetic factors on interindividual variability in 4β-hydroxycholesterol concentration. Eur J Clin Pharmacol 2016; 73:317-324. [PMID: 27975131 DOI: 10.1007/s00228-016-2178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Individual variability in the endogenous CYP3A metabolite 4β-hydroxycholesterol (4βOHC) is substantial, but to which extent this is determined by genetic and nongenetic factors remains unclear. The aim of the study was to evaluate the explanatory power of candidate genetic variants and key nongenetic factors on individual variability in 4βOHC levels in a large naturalistic patient population. METHODS We measured 4βOHC concentration in serum samples from 655 patients and used multiple linear regression analysis to estimate the quantitative effects of CYP3A4*22, CYP3A5*3, and POR*28 variant alleles, comedication with CYP3A inducers, inhibitors and substrates, sex, and age on individual 4βOHC levels. RESULTS 4βOHC concentration ranged >100-fold in the population, and the multiple linear regression model explained about one fourth of the variability (R 2 = 0.23). Only comedication with inducers or inhibitors, sex, and POR genotype were significantly associated with individual variability in 4βOHC level. The estimated quantitative effects on 4βOHC levels were greatest for inducer comedication (+>313%, P < 0.001), inhibitor comedication (-34%, P = 0.021), and female sex (+30%, P < 0.001), while only a modestly elevated 4βOHC level was observed in carriers vs. noncarriers of POR*28 (+11%, P = 0.023). CONCLUSIONS These findings suggest that the CYP3A4*22, CYP3A5*3, and POR*28 variant alleles are of limited importance for overall individual variability in 4βOHC levels compared to nongenetic factors.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway.
| | - C Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway
| | - K M Heitmann
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - T Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway
| | - E Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - S Bremer
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Vanhove T, de Jonge H, de Loor H, Annaert P, Diczfalusy U, Kuypers DRJ. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance. Br J Clin Pharmacol 2016; 82:1539-1549. [PMID: 27501475 DOI: 10.1111/bcp.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/20/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
AIMS We compared the CYP3A4 metrics weight-corrected midazolam apparent oral clearance (MDZ Cl/F/W) and plasma 4β-hydroxycholesterol/cholesterol (4β-OHC/C) as they relate to tacrolimus (TAC) Cl/F/W in renal transplant recipients. METHODS For a cohort of 147 patients, 8 h area under the curve (AUC) values for TAC and oral MDZ were calculated besides measurement of 4β-OHC/C. A subgroup of 70 patients additionally underwent intravenous erythromycin breath test (EBT) and were administered the intravenous MDZ probe. All patients were genotyped for common polymorphisms in CYP3A4, CYP3A5 and P450 oxidoreductase, among others. RESULTS MDZ Cl/F/W, 4β-OHC/C/W, EBT and TAC Cl/F/W were all moderately correlated (r = 0.262-0.505). Neither MDZ Cl/F/W nor 4β-OHC/C/W explained variability in TAC Cl/F/W in CYP3A5 expressors (n = 29). For CYP3A5 non-expressors (n = 118), factors explaining variability in TAC Cl/F/W in a MDZ-based model were MDZ Cl/F/W (R2 = 0.201), haematocrit (R2 = 0.139), TAC formulation (R2 = 0.107) and age (R2 = 0.032; total R2 = 0.479). In the 4β-OHC/C/W-based model, predictors were 4β-OHC/C/W (R2 = 0.196), haematocrit (R2 = 0.059) and age (R2 = 0.057; total R2 = 0.312). When genotype information was ignored, predictors of TAC Cl/F/W in the whole cohort were 4β-OHC/C/W (R2 = 0.167), MDZ Cl/F/W (R2 = 0.045); Tac QD formulation (R2 = 0.036), and haematocrit (R2 = 0.032; total R2 = 0.315). 4β-OHC/C/W, but not MDZ Cl/F/W, was higher in CYP3A5 expressors because it was higher in CYP3A4*1b carriers, which were almost all CYP3A5 expressors. CONCLUSIONS A MDZ-based model explained more variability in TAC clearance in CYP3A5 non-expressors. However, 4β-OHC/C/W was superior in a model in which no genotype information was available, likely because 4β-OHC/C/W was influenced by the CYP3A4*1b polymorphism.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Hylke de Jonge
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Henriëtte de Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ulf Diczfalusy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|