1
|
Quinn TM, Bruce AM, Burt T, Dhaliwal K. Phase 0 trials/ Intra-Target-Microdosing (ITM) and the lung: a review. BMC Pulm Med 2024; 24:425. [PMID: 39210357 PMCID: PMC11363577 DOI: 10.1186/s12890-024-03193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has highlighted the importance of efficient drug discovery in respiratory disease. The traditional set up of clinical trials is expensive and allows for significant attrition of new drugs, many of which undergo extensive safety testing before being abandoned for lack of efficacy. Phase 0 trials, named as they sit between pre-clinical research and phase I, allow for the testing of sub-clinical microdoses in humans to gather early pharmacokinetic (PK), pharmacodynamic (PD) and mechanistic data, before deciding on which drugs to advance further. This early data can improve the efficiency and cost effectiveness of drug development and reduce the extent of animal testing. Phase 0 trials traditionally have utilised sub-therapeutic microdoses of compounds administered intravenously with readouts focusing on PK - measured using highly sensitive methods such as accelerator mass spectrometry (AMS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) of peripheral blood, as well as whole-body positron emission tomography (PET). Mathematical models allow for extrapolation of this PK data to support the further testing of larger, systemically effective doses. However, this extrapolation method is limited at providing robust PD or target engagement/ mode of action data. Using an Intra-Target Microdosing (ITM) approach, a small compartment of the body (about 1% or less) is exposed to potentially clinically active local concentrations. This allows for the collection of PD data, evidence of target cell engagement, as well as the opportunity to extrapolate systemic PK and PD data. This approach has the potential within the pulmonary system for the study and rapid and cost-effective development of new and repurposed drugs.
Collapse
Affiliation(s)
- Tom M Quinn
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration & Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- Department of Respiratory Medicine, Western General Hospital, Edinburgh, UK.
| | - Annya M Bruce
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration & Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Tal Burt
- Burt Consultancy, LLC, New York, NY, USA
| | - Kevin Dhaliwal
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration & Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- Department of Respiratory Medicine, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
| |
Collapse
|
2
|
Burt T, Roffel AF, Langer O, Anderson K, DiMasi J. Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clin Transl Sci 2022; 15:1355-1379. [PMID: 35278281 PMCID: PMC9199889 DOI: 10.1111/cts.13269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research conducted over the past 2 decades has enhanced the validity and expanded the applications of microdosing and other phase 0 approaches in drug development. Phase 0 approaches can accelerate drug development timelines and reduce attrition in clinical development by increasing the quality of candidates entering clinical development and by reducing the time to "go-no-go" decisions. This can be done by adding clinical trial data (both healthy volunteers and patients) to preclinical candidate selection, and by applying methodological and operational advantages that phase 0 have over traditional approaches. The main feature of phase 0 approaches is the limited, subtherapeutic exposure to the test article. This means a reduced risk to research volunteers, and reduced regulatory requirements, timelines, and costs of first-in-human (FIH) testing. Whereas many operational aspects of phase 0 approaches are similar to those of other early phase clinical development programs, they have some unique strategic, regulatory, ethical, feasibility, economic, and cultural aspects. Here, we provide a guidance to these operational aspects and include case studies to highlight their potential impact in a range of clinical development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Phase-0/Microdosing Network, New York, New York, USA
- Burt Consultancy, LLC, New York, New York, USA
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Joseph DiMasi
- Tufts Center for the Study of Drug Development, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
4
|
Antimalarial drug candidates in phase I and II drug development: a scoping review. Antimicrob Agents Chemother 2021; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
|
5
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
6
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
7
|
Burt T, Vuong LT, Baker E, Young GC, McCartt AD, Bergstrom M, Sugiyama Y, Combes R. Phase 0, including microdosing approaches: Applying the Three Rs and increasing the efficiency of human drug development. Altern Lab Anim 2019; 46:335-346. [PMID: 30657329 DOI: 10.1177/026119291804600603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches, including microdosing, involve the use of sub-therapeutic exposures to the tested drugs, thus enabling safer, more-relevant, quicker and cheaper first-in-human (FIH) testing. These approaches also have considerable potential to limit the use of animals in human drug development. Recent years have witnessed progress in applications, methodology, operations, and drug development culture. Advances in applications saw an expansion in therapeutic areas, developmental scenarios and scientific objectives, in, for example, protein drug development and paediatric drug development. In the operational area, the increased sensitivity of Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS), expansion of the utility of Positron Emission Tomography (PET) imaging, and the introduction of Cavity Ring-Down Spectroscopy (CRDS), have led to the increased accessibility and utility of Phase 0 approaches, while reducing costs and exposure to radioactivity. PET has extended the application of microdosing, from its use as a predominant tool to record pharmacokinetics, to a method for recording target expression and target engagement, as well as cellular and tissue responses. Advances in methodology include adaptive Phase 0/Phase 1 designs, cassette and cocktail microdosing, and Intra-Target Microdosing (ITM), as well as novel modelling opportunities and simulations. Importantly, these methodologies increase the predictive power of extrapolation from microdose to therapeutic level exposures. However, possibly the most challenging domain in which progress has been made, is the culture of drug development. One of the main potential values of Phase 0 approaches is the opportunity to terminate development early, thus not only applying the principle of 'kill-early-kill-cheap' to enhance the efficiency of drug development, but also obviating the need for the full package of animal testing required for therapeutic level Phase 1 studies. Finally, we list developmental scenarios that utilised Phase 0 approaches in novel drug development.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy, LLC, Durham, NC, USA
| | | | - Elizabeth Baker
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Graeme C Young
- Translational Medicine, Research, GSK, David Jack Centre for R&D, Ware, Hertfordshire, UK
| | | | - Mats Bergstrom
- Department of Pharmacology and PET-centre, Uppsala University, Uppsala, Sweden
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN (The Institute of Physical and Chemical Research(, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
8
|
Okour M, Derimanov G, Barnett R, Fernandez E, Ferrer S, Gresham S, Hossain M, Gamo FJ, Koh G, Pereira A, Rolfe K, Wong D, Young G, Rami H, Haselden J. A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers. Br J Clin Pharmacol 2017; 84:482-489. [PMID: 29168205 DOI: 10.1111/bcp.13476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023] Open
Abstract
AIMS GSK3191607, a novel inhibitor of the Plasmodium falciparum ATP4 (PfATP4) pathway, is being considered for development in humans. However, a key problem encountered during the preclinical evaluation of the compound was its inconsistent pharmacokinetic (PK) profile across preclinical species (mouse, rat and dog), which prevented reliable prediction of PK parameters in humans and precluded a well-founded assessment of the potential for clinical development of the compound. Therefore, an open-label microdose (100 μg, six subjects) first time in humans study was conducted to assess the human PK of GSK3191607 following intravenous administration of [14C]-GSK3191607. METHODS A human microdose study was conducted to investigate the clinical PK of GSK3191607 and enable a Go/No Go decision on further progression of the compound. The PK disposition parameters estimated from the microdose study, combined with preclinical in vitro and in vivo pharmacodynamic parameters, were all used to estimate the potential efficacy of various oral dosing regimens in humans. RESULTS The PK profile, based on the microdose data, demonstrated a half-life (~17 h) similar to other antimalarial compounds currently in clinical development. However, combining the microdose data with the pharmacodynamic data provided results that do not support further clinical development of the compound for a single dose cure. CONCLUSIONS The information generated by this study provides a basis for predicting the expected oral PK profiles of GSK3191607 in man and supports decisions on the future clinical development of the compound.
Collapse
Affiliation(s)
- Malek Okour
- Clinical Pharmacology Modeling and Simulation (CPMS), GlaxoSmithKline, King of Prussia, PA, USA
| | - Geo Derimanov
- Discovery Medicine, Diseases of the Developing World, GlaxoSmithKline, Collegeville, PA, USA
| | - Rodger Barnett
- Drug Product Design and Development (DPDD), GlaxoSmithKline, Ware, Herts, UK
| | - Esther Fernandez
- Malaria DPU, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Santiago Ferrer
- Malaria DPU, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | | | - Mohammad Hossain
- Clinical Pharmacology Modeling and Simulation (CPMS), GlaxoSmithKline, King of Prussia, PA, USA
| | - Francisco-Javier Gamo
- Malaria DPU, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Gavin Koh
- Diseases of the Developing World, GlaxoSmithKline, Stockley Park, Uxbridge, UK
| | - Adrian Pereira
- Bioanalysis, Immunogenicity and Biomarkers (BIB), GlaxoSmithKline, Ware, UK
| | - Katie Rolfe
- Statistics, Programming and Data Strategy (SPDS), GlaxoSmithKline, Stockley Park, Uxbridge, UK
| | - Deborah Wong
- Clinical Pharmacology Science & Study Operations (CPSSO), GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Graeme Young
- Bioanalysis, Immunogenicity and Biomarkers (BIB), GlaxoSmithKline, Ware, UK
| | - Harshad Rami
- Diseases of the Developing World, GlaxoSmithKline, Stockley Park, Uxbridge, UK
| | - John Haselden
- Malaria DPU, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| |
Collapse
|