1
|
Moreno P, Ohara Y, Craig AJ, Liu H, Yang S, Dorsey TH, Zhang L, Panigrahi G, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Hussain SP. ADRA2A promotes the classical/progenitor subtype and reduces disease aggressiveness of pancreatic cancer. Carcinogenesis 2024; 45:845-856. [PMID: 39136088 PMCID: PMC11584292 DOI: 10.1093/carcin/bgae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Our comprehensive analysis revealed that adrenoceptor alpha 2A (ADRA2A) was downregulated in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype. Reduced ADRA2A expression was significantly associated with a high frequency of lymph node metastasis, higher pathological grade, advanced disease stage, and decreased survival among PDAC patients. In vitro experiments demonstrated that ADRA2A transgene expression and ADRA2A agonist inhibited PDAC cell invasion. Additionally, ADRA2A-high condition downregulated the basal-like/squamous gene expression signature, while upregulating the classical/progenitor gene expression signature in our PDAC patient cohort and PDAC cell lines. Metabolome analysis conducted on the PDAC cohort and cell lines revealed that elevated ADRA2A levels were associated with suppressed amino acid and carnitine/acylcarnitine metabolism, which are characteristic metabolic profiles of the classical/progenitor subtype. Collectively, our findings suggest that heightened ADRA2A expression induces transcriptome and metabolome characteristics indicative of classical/progenitor subtype with decreased disease aggressiveness in PDAC patients. These observations introduce ADRA2A as a candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin Zhang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Zhang X, Chen H, Wang C, Chen C, Liu L, Nie S, Gao X, Huang N, Chen J. Pan-cancer analysis of the role of α2C-adrenergic receptor (ADRA2C) in human tumors and validation in glioblastoma multiforme models. J Cancer 2024; 15:5691-5709. [PMID: 39308687 PMCID: PMC11414618 DOI: 10.7150/jca.98240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Several studies have reported the relationship between α2C-adrenergic receptor (ADRA2C) and both neoplastic and non-neoplastic diseases. However, a comprehensive pan-cancer analysis is currently lacking. Methods: Utilizing the RNA sequencing (RNA-seq) datasets from The Cancer Genome Atlas (TCGA) database, the roles of ADRA2C in human pan-cancer were analyzed through a variety of bioinformatics approaches, including R programming language and single-cell sequencing data analysis, et al. Besides, cell migration assay and immunochemistry were employed to further validate the role of ADRA2C in glioblastoma multiforme (GBM) cell lines and GBM mouse model. Results: A total of 33 cancer types were involved in this study. It was revealed that the expression level of ADRA2C varied across different clinical stages in patients with breast invasive carcinoma (BRCA), esophageal adenocarcinoma (ESCA), kidney renal papillary cell carcinoma (KIRP) and lung squamous cell carcinoma (LUSC). Meanwhile, it was found that ADRA2C may play roles in prognosis of adrenocortical carcinoma (ACC), glioblastoma multiforme and lower grade glioma (GBM-LGG), and uveal melanoma (UVM). Functional enrichment analysis suggested that ADRA2C expression level was highly correlated with neuronal system-related pathways. Moreover, ADRA2C may be a promising diagnostic marker for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), GBM, GBMLGG, kidney chromophobe (KICH), and KIRP. Additionally, ADRA2C expression level was correlated with the levels of several infiltrating cells and immune checkpoint genes. Besides, the single-cell sequencing data analysis indicated that ADRA2C played a role in multiple tumor development processes in GBM, retinoblastoma (RB), and UVM. Finally, in vitro and in vivo experiments confirmed that the expression level of ADRA2C may be associated with glioma cell migration, apoptosis, and invasion. Conclusion: ADRA2C exhibited to play a notable role in several cancer types, suggesting that ADRA2C could serve as a promising biomarker or target for cancer diagnosis, prognosis, and treatment, particularly for GBM.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huitong Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chenyang Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, China
| | - Chan Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Liyan Liu
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuangfa Nie
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| |
Collapse
|
3
|
Schmit SL, Tsai YY, Bonner JD, Sanz-Pamplona R, Joshi AD, Ugai T, Lindsey SS, Melas M, McDonnell KJ, Idos GE, Walker CP, Qu C, Kast WM, Da Silva DM, Glickman JN, Chan AT, Giannakis M, Nowak JA, Rennert HS, Robins HS, Ogino S, Greenson JK, Moreno V, Rennert G, Gruber SB. Germline genetic regulation of the colorectal tumor immune microenvironment. BMC Genomics 2024; 25:409. [PMID: 38664626 PMCID: PMC11046907 DOI: 10.1186/s12864-024-10295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE To evaluate the contribution of germline genetics to regulating the briskness and diversity of T cell responses in CRC, we conducted a genome-wide association study to examine the associations between germline genetic variation and quantitative measures of T cell landscapes in 2,876 colorectal tumors from participants in the Molecular Epidemiology of Colorectal Cancer Study (MECC). METHODS Germline DNA samples were genotyped and imputed using genome-wide arrays. Tumor DNA samples were extracted from paraffin blocks, and T cell receptor clonality and abundance were quantified by immunoSEQ (Adaptive Biotechnologies, Seattle, WA). Tumor infiltrating lymphocytes per high powered field (TILs/hpf) were scored by a gastrointestinal pathologist. Regression models were used to evaluate the associations between each variant and the three T-cell features, adjusting for sex, age, genotyping platform, and global ancestry. Three independent datasets were used for replication. RESULTS We identified a SNP (rs4918567) near RBM20 associated with clonality at a genome-wide significant threshold of 5 × 10- 8, with a consistent direction of association in both discovery and replication datasets. Expression quantitative trait (eQTL) analyses and in silico functional annotation for these loci provided insights into potential functional roles, including a statistically significant eQTL between the T allele at rs4918567 and higher expression of ADRA2A (P = 0.012) in healthy colon mucosa. CONCLUSIONS Our study suggests that germline genetic variation is associated with the quantity and diversity of adaptive immune responses in CRC. Further studies are warranted to replicate these findings in additional samples and to investigate functional genomic mechanisms.
Collapse
Affiliation(s)
- Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA.
| | - Ya-Yu Tsai
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph D Bonner
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebeca Sanz-Pamplona
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sidney S Lindsey
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Marilena Melas
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin J McDonnell
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Gregory E Idos
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Christopher P Walker
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Chenxu Qu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hedy S Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | | | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Stephen B Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
4
|
Moreno P, Ohara Y, Craig AJ, Liu H, Yang S, Zhang L, Panigrahi G, Dorsey TH, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Perwez Hussain S. ADRA2A promotes the classical/progenitor subtype and reduces disease aggressiveness of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584316. [PMID: 38903083 PMCID: PMC11188071 DOI: 10.1101/2024.03.12.584316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Transcriptome analysis in PDAC patient cohorts revealed downregulation of adrenoceptor alpha 2A (ADRA2A) in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype. Reduced ADRA2A expression was significantly associated with a high frequency of lymph node metastasis, higher pathological grade, advanced disease stage, and decreased survival among PDAC patients. In vitro experiments demonstrated that ADRA2A transgene expression and ADRA2A agonist inhibited PDAC cell invasion. Additionally, ADRA2A-high condition downregulated the basal-like/squamous gene expression signature, while upregulating the classical/progenitor gene expression signature in our PDAC patient cohort and PDAC cell lines. Metabolome analysis conducted on the PDAC cohort and cell lines revealed that elevated ADRA2A levels were associated with suppressed amino acid and carnitine/acylcarnitine metabolism, which are characteristic metabolic profiles of the classical/progenitor subtype. Collectively, our findings suggest that heightened ADRA2A expression induces transcriptome and metabolome characteristics indicative of classical/progenitor subtype with decreased disease aggressiveness in PDAC patients. These observations introduce ADRA2A as a candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda J. Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lin Zhang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General & Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - S. Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Jabloñski M, Rodríguez MS, Rivero EM, Bruque CD, Vanzulli S, Bruzzone A, Pérez Piñero C, Lüthy IA. The Beta2-adrenergic agonist salbutamol synergizes with paclitaxel on cell proliferation and tumor growth in triple negative breast cancer models. Cancer Chemother Pharmacol 2023; 92:485-499. [PMID: 37725114 DOI: 10.1007/s00280-023-04586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Globally breast cancer accounts for 24.5% in incidence and 15.5% in cancer deaths in women. The triple-negative subtype lacks any specific therapy and is treated with chemotherapy, resulting in significant side-effects. We aimed to investigate if the dose of chemotherapeutic drugs could be diminished by co-administering it with the β2-agonist salbutamol. METHODS Cell proliferation was measured by thymidine incorporation; gene expression, by real-time PCR and protein phosphorylation by WB. Apoptosis was assessed by acridine orange / ethidium bromide and TUNEL tests. Public patient databases were consulted. Cells were inoculated to nude mice and their growth assessed. RESULTS The β2-agonist salbutamol synergizes in MDA-MB-231 cells in vitro with paclitaxel and doxorubicin on cell proliferation through ADRB2 receptors, while the β-blocker propranolol does not. The expression of this receptor was assessed in patient databases and other cell lines. Triple negative samples had the lowest expression. Salbutamol and paclitaxel decreased MDA-MB-231 cell proliferation while their combination further inhibited it. The pathways involved were analyzed. When these cells were inoculated to nude mice, paclitaxel and salbutamol inhibited tumor growth. The combined effect was significantly greater. Paclitaxel increased the expression of MDR1 while salbutamol partially reversed this increase. CONCLUSION While the effect of salbutamol was mainly on cell proliferation, suboptimal concentrations of paclitaxel provoked a very important enhancement of apoptosis. The latter enhanced transporter proteins as MDR1, whose expression were diminished by salbutamol. The expression of ADRB2 should be assessed in the biopsy or tumor to eventually select patients that could benefit from salbutamol repurposing.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ezequiel Mariano Rivero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Centre for Genomic Regulation, Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | | | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), Bahía Blanca, Argentina
| | - Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Vaganova AN, Maslennikova DD, Konstantinova VV, Kanov EV, Gainetdinov RR. The Expression of Trace Amine-Associated Receptors (TAARs) in Breast Cancer Is Coincident with the Expression of Neuroactive Ligand-Receptor Systems and Depends on Tumor Intrinsic Subtype. Biomolecules 2023; 13:1361. [PMID: 37759760 PMCID: PMC10526748 DOI: 10.3390/biom13091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the contribution of trace amine-associated receptors (TAARs) to breast cancer (BC) is recognized, but their associations with various pathological characteristics are not yet understood. There is accumulated transcriptomic data for BC tumors, which are represented in publicly accessible databases. We estimated TAARs' (including TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) associations with BC stage, grade, and molecular subtypes in these data and identified that the expression of all TAARs was associated with more unfavorable cancer subtypes, including basal-like and HER2-positive tumors. Also, the significant upregulation of all TAARs was demonstrated in circulating tumor cells compared to the metastatic lesions. Considering that co-expressed genes are more likely to be involved in the same biologic processes, we analyzed genes that are co-expressed with TAARs in BC. These gene sets were enriched with the genes of the olfactory transduction pathway and neuroactive ligand-receptor interaction participants. TAARs are co-expressed with G-protein-coupled receptors of monoamine neurotransmitters including dopamine, norepinephrine, and serotonin as well as with other neuroactive ligand-specific receptors. Since TAAR1 is able to modulate the activity of monoamine receptors that are involved in the regulation of BC growth, TAAR1 and potentially other TAARs may be regarded as prospective therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (E.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Daria D. Maslennikova
- Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Valeria V. Konstantinova
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (E.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (E.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| |
Collapse
|
7
|
Amgalan B, Day CP, Przytycka TM. Exploring tumor-normal cross-talk with TranNet: Role of the environment in tumor progression. PLoS Comput Biol 2023; 19:e1011472. [PMID: 37721939 PMCID: PMC10538798 DOI: 10.1371/journal.pcbi.1011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics/Center for Cancer Research/National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Ni Z, Dawa Z, Suolang D, Pingcuo Q, Langga Z, Quzhen P, Deji Z. Platycodin D inhibits the proliferation, invasion and migration of endometrial cancer cells by blocking the PI3K/Akt signaling pathway via ADRA2A upregulation. Oncol Lett 2023; 25:136. [PMID: 36909368 PMCID: PMC9996608 DOI: 10.3892/ol.2023.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/17/2022] [Indexed: 02/17/2023] Open
Abstract
Endometrial cancer (EC) is a complex disease that affects the reproductive health of females worldwide. Platycodin D (PD) is known to exert numerous anticancer effects, markedly inhibiting cell proliferation, inducing apoptosis and causing cell cycle arrest in several types of cancer. The present study aimed to explore the mechanisms underlying the effects of PD in EC cells. The viability and proliferation of human endometrial stromal cells (ESCs) and RL95-2 EC cells following treatment with PD were evaluated using Cell Counting Kit-8, MTT and colony formation assays. Wound healing and Transwell assays were also performed to assess the migration and invasion of EC cells following treatment with PD. The expression levels of α2A-adrenergic receptor (ADRA2A) were measured using reverse transcription-quantitative PCR and western blotting assays with and without PD treatment and following transfection with short hairpin (sh) RNAs targeting ADRA2A2. Moreover, western blot analysis was performed to measure the expression levels of Ki67, PCNA, MMP2 and MMP9 and the phosphorylation of proteins of the PI3K/Akt signaling pathway. The results demonstrated that treatment with PD markedly decreased the proliferation, invasion and migration of EC cells, and reduced activation of the PI3K/Akt signaling pathway in EC cells. Moreover, transfection with sh-ADRA2A attenuated the effects of PD. ADRA2A expression was downregulated in EC cells compared with ESCs, and ADRA2A expression was elevated in EC cells following treatment with PD. In conclusion, the present study indicates that PD blocked the PI3K/Akt signaling pathway via the upregulation of ADRA2A expression, thereby inhibiting the proliferation, invasion and migration of EC cells.
Collapse
Affiliation(s)
- Zhen Ni
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoma Dawa
- Basic Department, Medical College of Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Deji Suolang
- Department of Respiratory and Critical Care Diseases, The People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Quzhen Pingcuo
- Department of Digestive System, The People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoma Langga
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Pingcuo Quzhen
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoga Deji
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850000, P.R. China
| |
Collapse
|
9
|
Conceição F, Sousa DM, Tojal S, Lourenço C, Carvalho-Maia C, Estevão-Pereira H, Lobo J, Couto M, Rosenkilde MM, Jerónimo C, Lamghari M. The Secretome of Parental and Bone Metastatic Breast Cancer Elicits Distinct Effects in Human Osteoclast Activity after Activation of β2 Adrenergic Signaling. Biomolecules 2023; 13:biom13040622. [PMID: 37189370 DOI: 10.3390/biom13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
The sympathetic nervous system (SNS), particularly through the β2 adrenergic receptor (β2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting β2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under β2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under β-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.
Collapse
Affiliation(s)
- Francisco Conceição
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Tojal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Lourenço
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Helena Estevão-Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Marina Couto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Meriem Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Chu DT, Bui NL, Le NH. Adrenoceptors and SCD1 in adipocytes/adipose tissues: The expression and variation in health and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:311-332. [PMID: 36631196 DOI: 10.1016/bs.pmbts.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity, considered a metabolic disorder, is one of the most significant health issues that the community has to cope with today. A rising number of studies have been conducted to find out promising genetic targets for obese treatment. The sympathetic nervous system was proven to possess remarkable roles in energy metabolism, including the stimulation of lipolysis as well as thermogenesis, via distinct adrenoceptors appearing on the membrane of adipocyte. A decrease of β-adrenoceptor expression has been observed in obese individuals, which is related to reducing energy expenditure and developing obesity. While that the deficiency of stearoyl-CoA desaturase-1 (SCD1), which is a promising target for treatments of metabolic diseases, decreases oxidation and promotes the synthesis of fatty acids. Here, we emphasized several differences between distinct adrenoceptor subtypes, including their mRNA expression level and function in white adipose tissue and brown adipose tissue. We also highlighted SCD1's roles related to the progression of adipocytes and its changing expression under the obese condition in both rodents and humans, and furthermore, tried to figure out the interaction between adrenoceptors and SCD1 in adipose tissue.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
11
|
Profiling the Adrenergic System in Breast Cancer and the Development of Metastasis. Cancers (Basel) 2022; 14:cancers14225518. [PMID: 36428611 PMCID: PMC9688855 DOI: 10.3390/cancers14225518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies and preclinical models suggest that chronic stress might accelerate breast cancer (BC) growth and the development of metastasis via sympathetic neural mechanisms. Nevertheless, the role of each adrenergic pathway (α1, α2, and β) in human samples remains poorly depicted. Herein, we propose to characterize the profile of the sympathetic system (e.g., release of catecholamines, expression of catecholamine metabolic enzymes and adrenoreceptors) in BC patients, and ascertain its relevance in the development of distant metastasis. Our results demonstrated that BC patients exhibited increased plasma levels of catecholamines when compared with healthy donors, and this increase was more evident in BC patients with distant metastasis. Our analysis using the BC-TCGA database revealed that the genes coding the most expressed adrenoreceptors in breast tissues (ADRA2A, ADRA2C, and ADRB2, by order of expression) as well as the catecholamine synthesizing (PNMT) and degrading enzyme (MAO-A and MAO-B) genes were downregulated in BC tissues. Importantly, the expression of ADRA2A, ADRA2C, and ADRB2 was correlated with metastatic BC and BC subtypes, and thus the prognosis of the disease. Overall, we gathered evidence that under stressful conditions, both the α2- and β2-signaling pathways might work on a synergetic matter, thus paving the way for the development of new therapeutic approaches.
Collapse
|
12
|
Solernó LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vásquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep 2022; 12:15058. [PMID: 36075937 PMCID: PMC9458647 DOI: 10.1038/s41598-022-18324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is still associated with limited response to standard-of-care therapy and alarmingly elevated mortality rates, especially in low- and middle-income countries. Despite multiple efforts to repurpose β-blocker propranolol in oncology, its potential application in osteosarcoma management remains largely unexplored. Considering the unsatisfied clinical needs of this aggressive disease, we evaluated the antitumoral activity of propranolol using different in vitro and in vivo osteosarcoma preclinical models, alone or in addition to chemotherapy. Propranolol significantly impaired cellular growth in β2-adrenergic receptor-expressing MG-63 and U-2OS cells, and was capable of blocking growth-stimulating effects triggered by catecholamines. siRNA-mediated ADRB2 knockdown in MG-63 cells was associated with decreased cell survival and a significant attenuation of PPN anti-osteosarcoma activity. Direct cytostatic effects of propranolol were independent of apoptosis induction and were associated with reduced mitosis, G0/G1 cell cycle arrest and a significant down-regulation of cell cycle regulator Cyclin D1. Moreover, colony formation, 3D spheroid growth, cell chemotaxis and capillary-like tube formation were drastically impaired after propranolol treatment. Interestingly, anti-migratory activity of β-blocker was associated with altered actin cytoskeleton dynamics. In vivo, propranolol treatment (10 mg/kg/day i.p.) reduced the early angiogenic response triggered by MG-63 cells in nude mice. Synergistic effects were observed in vitro after combining propranolol with chemotherapeutic agent cisplatin. Sustained administration of propranolol (10 mg/kg/day i.p., five days a week), alone and especially in addition to low-dose metronomic cisplatin (2 mg/kg/day i.p., three times a week), markedly reduced xenograft progression. After histological analysis, propranolol and cisplatin combination resulted in low tumor mitotic index and increased tumor necrosis. β-blockade using propranolol seems to be an achievable and cost-effective therapeutic approach to modulate osteosarcoma aggressiveness. Further translational studies of propranolol repurposing in osteosarcoma are warranted.
Collapse
Affiliation(s)
- Luisina M Solernó
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Natasha T Sobol
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - María F Gottardo
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Carla S Capobianco
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomedicine Research Institute of Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima, Perú
| | - Daniel F Alonso
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina. .,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina. .,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Pérez Piñero C, Rivero EM, Gargiulo L, Rodríguez MS, Bruque CD, Bruzzone A, Lüthy IA. Adrenergic receptors in breast cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:37-63. [PMID: 36357079 DOI: 10.1016/bs.pmbts.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most diagnosed malignancy in women worldwide and in the majority of the countries. Breast cancers are classified on the expression of estrogen and progesterone receptor expression and overexpression of human epidermal growth factor receptor 2 (HER2) as luminal, HER2+ and triple negative breast cancer. The intrinsic molecular subtypes match this classification. Cancer diagnosis and treatment cause distress. In both acute and chronic stress, the secreted catecholamines adrenaline and noradrenaline trigger the "fight-or-flight" response. This chapter focuses on the actions of the β2 and α2 adrenergic receptors in several models of breast cancer. The actions of these receptors depend on the model used to investigate them. The β2-adrenergic receptors seem to exert a dual action. They can directly act on the epithelial cells inhibiting cell proliferation and migration/invasion and indirectly upon the immune microenvironment. The proportion of β2 receptors in each compartment could, therefore, lean the scale to an inhibition or to an exacerbation of tumor growth, invasion and metastasis. All the work points to a beneficial or neutral action of β-blockers on breast cancer. With respect to α2-adrenergic receptors, the investigation performed by our group suggest that the α2B and the α2C receptors are linked to enhanced cell proliferation and tumor growth acting through both the epithelial and the stromal (fibroblastic) compartments while α2A could be beneficial for patients. Some adrenergic compounds could be repurposed for breast cancer treatment due to their very low side effects and very well-known pharmacology.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | | | - Lucía Gargiulo
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Carlos David Bruque
- Genética Molecular Humana y Bioinformática, Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB -CONICET, Buenos Aires, Argentina
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Beta-2 Adrenergic Receptor Gene Expression in HER2-Positive Early-Stage Breast Cancer Patients: A Post-hoc Analysis of the NCCTG-N9831 (Alliance) Trial. Clin Breast Cancer 2022; 22:308-318. [PMID: 34980541 PMCID: PMC9149124 DOI: 10.1016/j.clbc.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Beta-2 adrenergic receptor (ß2AR) modulates immune activation and may enhance trastuzumab activity. We assessed the impact of ß2AR gene (ADRB2) expression on the outcomes of patients with HER2-positive early-stage breast cancer enrolled on the NCCTG-N9831 trial. PATIENTS AND METHODS This is a post-hoc analysis of the NCCTG-N9831 trial, which compared chemotherapy (arm A) versus chemotherapy plus trastuzumab (arms B&C) as adjuvant treatment of patients with HER2-positive early-stage breast cancer, with disease-free survival (DFS) as primary endpoint. Gene expression levels retrieved by DASL assay were used to classify patients as ADRB2-high or ADRB2-low. Hazard ratios (HRs) were calculated by a Cox proportional model adjusted for prognostic variables and ADRB2 expression. Correlations between ADRB2 expression and stromal tumor-infiltrating lymphocyte (TIL) levels were assessed with Pearson coefficient. A multivariable Cox regression model with interaction term was performed to assess the interaction between ADRB2 expression and treatment arm; and ADRB2 expression and a 8-gene signature previously shown to predict trastuzumab benefit. RESULTS Overall, 1,282 patients were included (ADRB2-high [N = 944] / ADRB2-low [N = 338]). A high expression of ADRB2 was associated with a longer DFS (P = .01) in the overall population. The addition of trastuzumab to chemotherapy improved DFS only in patients with ADRB2-high tumors (P < .01). ADRB2 expression was correlated with TIL levels (r = 0.24, P < .001). No association between ADRB2 expression and the 8-gene trastuzumab benefit signature was observed (P = .32). CONCLUSION Our findings suggest that a high ADRB2 expression is a favorable prognostic factor and may identify patients with HER2-positive early-stage breast cancer who benefit from adjuvant trastuzumab. TRIAL REGISTRATION clinicaltrials.gov NCT00005970.
Collapse
|
15
|
Lourenço C, Conceição F, Jerónimo C, Lamghari M, Sousa DM. Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers (Basel) 2022; 14:1881. [PMID: 35454788 PMCID: PMC9028241 DOI: 10.3390/cancers14081881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and β-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.
Collapse
Affiliation(s)
- Catarina Lourenço
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology—ICBAS-UP, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
16
|
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 2022; 237:2107-2127. [PMID: 35243626 DOI: 10.1002/jcp.30707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of β2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by β2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Wei X, Chen L, Yang A, Lv Z, Xiong M, Shan C. ADRB2 is a potential protective gene in breast cancer by regulating tumor immune microenvironment. Transl Cancer Res 2022; 10:5280-5294. [PMID: 35116377 PMCID: PMC8798932 DOI: 10.21037/tcr-21-1257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Background Breast cancer (BRCA) is the leading cause of cancer death among females. Studies suggested that β-adrenoceptors involved in tumor progression by regulating immune system. However, how ADRB2 affects the immune infiltration in BRCA is still being unraveled. Methods Expressions of ADRB2 in multiple tissues, cancers and blood cells were analyzed by using the Human Protein Atlas and UALCAN database. Expression differentiation of ADRB2 in tumor microenvironment (TME) of BRCA was detected in TISCH database. Correlations between ADRB2 and immune cell infiltration were analyzed by TIMER 2.0, and co-expression genes of ADRB2 were obtained from the cBioPortal website. Functional enrichment analyses and protein-protein interactions were constructed as well. Finally, the potential mechanisms of ADRB2 and candidate drugs targeting BRCA were discussed by using the Metascape, STITCH and Cmap tools. Results ADRB2 was significantly down-regulated in BRCA, and lower ADRB2 expression often resulted in worse prognosis in BRCA patients. ADRB2 was mainly expressed in breast tissue and blood. Among blood cell subtypes and TME of BRCA, ADRB2 was specifically expressed in T cell subtypes. Also, ADRB2 expression level was positively correlated with the infiltration levels of immune cells such as CD4+ T cell, CD8+ T cell, Tγδ and myeloid DC while negatively correlated with Treg, Tfh and myeloid-derived suppressor cell. Furthermore, functional enrichment analyses revealed that most enriched pathways were immune-related, especially in T cell-related pathways. Also, transcription factors (TFs) analyses showed that most downstream TFs regulated by ADRB2 were immune-related, and most candidate drugs had promising anti-tumor effects. Conclusions In conclusion, ADRB2 was a potential protective gene in BRCA, and it might play a vital role in regulating immune responses. The expression level of ADRB2 was positively correlated with immune cells infiltration in BRCA, especially for T cells. Therefore, ADRB2 would be a target for boosting immunotherapy effects in BRCA.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liang Chen
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Aiming Yang
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoyu Lv
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Meng Xiong
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chengxiang Shan
- Third Division of Department of General Surgery of Second Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Liu X, Li Y, Kang L, Wang Q. Recent Advances in the Clinical Value and Potential of Dexmedetomidine. J Inflamm Res 2022; 14:7507-7527. [PMID: 35002284 PMCID: PMC8724687 DOI: 10.2147/jir.s346089] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Dexmedetomidine, a highly selective α2-adrenoceptor agonist, has sedative, anxiolytic, analgesic, sympatholytic, and opioid-sparing properties and induces a unique sedative response which shows an easy transition from sleep to wakefulness, thus allowing a patient to be cooperative and communicative when stimulated. Recent studies indicate several emerging clinical applications via different routes. We review recent data on dexmedetomidine studies, particularly exploring the varying routes of administration, experimental implications, clinical effects, and comparative advantages over other drugs. A search was conducted on the PubMed and Web of Science libraries for recent studies using different combinations of the words “dexmedetomidine”, “route of administration”, and pharmacological effect. The current routes, pharmacological effects, and application categories of dexmedetomidine are presented. It functions by stimulating pre- and post-synaptic α2-adrenoreceptors within the central nervous system, leading to hyperpolarization of noradrenergic neurons, induction of an inhibitory feedback loop, and reduction of norepinephrine secretion, causing a sympatholytic effect, in addition to its anti-inflammation, sleep induction, bowel recovery, and sore throat reduction effects. Compared with similar α2-adrenoceptor agonists, dexmedetomidine has both pharmacodynamics advantage of a significantly greater α2:α1-adrenoceptor affinity ratio and a pharmacokinetic advantage of having a significantly shorter elimination half-life. In its clinical application, dexmedetomidine has been reported to present a significant number of benefits including safe sedation for various surgical interventions, improvement of intraoperative and postoperative analgesia, sedation for compromised airways without respiratory depression, nephroprotection and stability of hypotensive hemodynamics, reduction of postoperative nausea and vomiting and postoperative shivering incidence, and decrease of intraoperative blood loss. Although the clinical application of dexmedetomidine is promising, it is still limited and further research is required to enhance understanding of its pharmacological properties, patient selection, dosage, and adverse effects.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yueqin Li
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Li Kang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Huang P, Zhou P, Liang Y, Wu J, Wu G, Xu R, Dai Y, Guo Q, Lu H, Chen Q. Exploring the molecular targets and mechanisms of [10]-Gingerol for treating triple-negative breast cancer using bioinformatics approaches, molecular docking, and in vivo experiments. Transl Cancer Res 2021; 10:4680-4693. [PMID: 35116323 PMCID: PMC8798581 DOI: 10.21037/tcr-21-1138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive among breast cancer subtypes with the worst prognosis. Ginger is widely used in pharmaceuticals and as food. Its anticancer properties are known, but the mechanism is still unclear. [10]-Gingerol is one of the main phenolic compounds isolated from ginger. Studying the biological effects of [10]-Gingerol is of great significance to understand the efficacy of ginger. METHODS In this study, the therapeutic effects of [10]-Gingerol on TNBC cells were studied using network pharmacology, molecular docking, and in vitro experiments, and the target and mechanism of action were explained. RESULTS A total of 48 targets of ginger for the treatment of TNBC were found. These targets might interfere with the growth of TNBC by participating in many pathways, such as endocrine resistance, progesterone-mediated oocyte maturation, estrogen signaling pathway, and cellular senescence. Prognostic analyses indicated that the JUN, FASN, ADRB2, ADRA2A, and PGR were the hub genes, while molecular docking predicted the stable binding of ADRB2 protein with drug compounds. Additionally, [10]-Gingerol could induce apoptosis by regulating the caspase activation. CONCLUSIONS [10]-Gingerol affects the growth of TNBC through multiple action targets and participating in multiple action pathways. ADRB2 and apoptosis pathways might be important target pathways for [10]-Gingerol in the treatment of TNBC.
Collapse
Affiliation(s)
- Ping Huang
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Department of Clinical Laboratory, Yuebei People's Hospital, Shaoguan, China
| | - Peijuan Zhou
- Department of Breast Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahua Wu
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guosong Wu
- Department of Pharmacy, Nanfang Hospital Baiyun Branch, Guangzhou, China
| | - Rui Xu
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yan Dai
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianqian Guo
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai Lu
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Department of Clinical Laboratory, Yuebei People's Hospital, Shaoguan, China
| | - Qianjun Chen
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Li Z, Qian Z, Chen F, Jiang S, Meng L, Chen J. Identification of Key lncRNA-mRNA Pairs and Functional lncRNAs in Breast Cancer by Integrative Analysis of TCGA Data. Front Genet 2021; 12:709514. [PMID: 34490040 PMCID: PMC8417727 DOI: 10.3389/fgene.2021.709514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in many diseases and are involved in the post-transcriptional regulatory network of tumors. The purpose of this study is to mine new lncRNA–mRNA regulatory pairs and analyze the new mechanism of lncRNA involvement in breast cancer progression. Using breast cancer miRNA and mRNA expression profiling from The Cancer Genome Atlas (TCGA), we identified 59 differentially expressed lncRNAs, 88 differentially expressed miRNAs, and 1,465 differentially expressed mRNAs between breast cancer tissue and adjacent normal breast cancer. Whereafter, four candidate lncRNAs (FGF14-AS2, LINC01235, AC055854.1, and AC124798.1) were identified by the Kaplan–Meier (K–M) plotter. Furthermore, we screened the hub lncRNA (LINC01235) through univariate Cox analysis, multivariate Cox analysis, and qPCR validation, which was significantly correlated with breast cancer stage, ER status, and pathological N. Subsequently, 107 LINC01235-related mRNAs were obtained by combining differentially expressed miRNAs, differentially expressed mRNAs, and LINC01235 targeting miRNAs and mRNAs. The protein–protein interaction (PPI) network was established by Cytoscape software, and 53 key genes were screened. Function and pathway enrichment showed that LINC01235-related key genes might be involved in the process of cell differentiation, cell proliferation, and p53 signal pathway. In addition, LINC01235 has been confirmed to regulate the proliferation, migration, and invasion of MCF-7 cells in in vitro experiments. Furthermore, we screened three mRNAs (ESR1, ADRA2A, and DTL) associated with breast cancer drug resistance from key genes. Through RNA interference experiments in vitro and correlation analysis, we found that there was a negative feedback mechanism between LINC01235 and ESR1/ADRA2A. In conclusion, our results suggest that LINC01235-ESR1 and LINC01235-ADRA2A could serve as important co-expression pairs in the progression of breast cancer, and LINC01235 plays a key role as an independent prognostic factor in patients with breast cancer. The findings of this work greatly increase our understanding of the molecular regulatory mechanisms of lncRNA in breast cancer.
Collapse
Affiliation(s)
- Zhe Li
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Qian
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Chen
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujun Jiang
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingjia Meng
- Department of General Surgery, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Madel MB, Elefteriou F. Mechanisms Supporting the Use of Beta-Blockers for the Management of Breast Cancer Bone Metastasis. Cancers (Basel) 2021; 13:cancers13122887. [PMID: 34207620 PMCID: PMC8228198 DOI: 10.3390/cancers13122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bone represents the most common site of metastasis for breast cancer and the establishment and growth of metastatic cancer cells within the skeleton significantly reduces the quality of life of patients and their survival. The interplay between sympathetic nerves and bone cells, and its influence on the process of breast cancer bone metastasis is increasingly being recognized. Several mechanisms, all dependent on β-adrenergic receptor signaling in stromal bone cells, were shown to promote the establishment of disseminated cancer cells into the skeleton. This review provides a summary of these mechanisms in support of the therapeutic potential of β-blockers for the early management of breast cancer metastasis. Abstract The skeleton is heavily innervated by sympathetic nerves and represents a common site for breast cancer metastases, the latter being the main cause of morbidity and mortality in breast cancer patients. Progression and recurrence of breast cancer, as well as decreased overall survival in breast cancer patients, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. Preclinical studies have demonstrated that sympathetic stimulation of β-adrenergic receptors in osteoblasts increases bone vascular density, adhesion of metastatic cancer cells to blood vessels, and their colonization of the bone microenvironment, whereas β-blockade prevented these events in mice with high endogenous sympathetic activity. These findings in preclinical models, along with clinical data from breast cancer patients receiving β-blockers, support the pathophysiological role of excess sympathetic nervous system activity in the formation of bone metastases, and the potential of commonly used, safe, and low-cost β-blockers as adjuvant therapy to improve the prognosis of bone metastases.
Collapse
Affiliation(s)
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
22
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
He Z, Wang C, Xue H, Zhao R, Li G. Identification of a Metabolism-Related Risk Signature Associated With Clinical Prognosis in Glioblastoma Using Integrated Bioinformatic Analysis. Front Oncol 2020; 10:1631. [PMID: 33042807 PMCID: PMC7523182 DOI: 10.3389/fonc.2020.01631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Altered metabolism of glucose, lipid and glutamine is a prominent hallmark of cancer cells. Currently, cell heterogeneity is believed to be the main cause of poor prognosis of glioblastoma (GBM) and is closely related to relapse caused by therapy resistance. However, the comprehensive model of genes related to glucose-, lipid- and glutamine-metabolism associated with the prognosis of GBM remains unclear, and the metabolic heterogeneity of GBM still needs to be further explored. Based on the expression profiles of 1,395 metabolism-related genes in three datasets of TCGA/CGGA/GSE, consistent cluster analysis revealed that GBM had three different metabolic status and prognostic clusters. Combining univariate Cox regression analysis and LASSO-penalized Cox regression machine learning methods, we identified a 17-metabolism-related genes risk signature associated with GBM prognosis. Kaplan-Meier analysis found that obtained signature could differentiate the prognosis of high- and low-risk patients in three datasets. Moreover, the multivariate Cox regression analysis and receiver operating characteristic curves indicated that the signature was an independent prognostic factor for GBM and had a strong predictive power. The above results were further validated in the CGGA and GSE13041 datasets, and consistent results were obtained. Gene set enrichment analysis (GSEA) suggested glycolysis gluconeogenesis and oxidative phosphorylation were significantly enriched in high- and low-risk GBM. Lastly Connectivity Map screened 54 potential compounds specific to different subgroups of GBM patients. Our study identified a novel metabolism-related gene signature, in addition the existence of three different metabolic status and two opposite biological processes in GBM were recognized, which revealed the metabolic heterogeneity of GBM. Robust metabolic subtypes and powerful risk prognostic models contributed a new perspective to the metabolic exploration of GBM.
Collapse
Affiliation(s)
- Zheng He
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Chengcheng Wang
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
24
|
Chi M, Shi X, Huo X, Wu X, Zhang P, Wang G. Dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:531. [PMID: 32411754 PMCID: PMC7214880 DOI: 10.21037/atm.2020.04.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been reported to increase the malignancy of breast cancer cells in vitro and stimulate tumor growth in mice. Transmembrane protease serine 2 (TMPRSS2) demonstrates proteolytic activity, resulting in degradation of the extracellular matrix (ECM). This study investigated whether and how TMPRSS2 regulates migration of DEX-treated breast cancer cells. Methods Breast cancer cell lines MCF-7 and MDA-MB-231 were treated with DEX and scratch assay was performed. Expressions of TMPRSS2, α2-adrenergic receptor, phospho-STAT3Tyr705, Rab11, and ECM components were assessed using real-time polymerase chain reaction (real-time PCR), Western blotting, and immunofluorescence staining. ELISA and ultracentrifugation were used to quantify secreted exosomal proteins. Knockdown assay was used to inhibit the expression of TMPRSS2 and Rab11. Results DEX significantly increased the migration of MCF-7 and MDA-MB-231, which was accompanied by the upregulation and colocalization of TMPRSS2 and α2-adrenergic receptor. Nuclear phospho-STAT3Tyr705 was increased dramatically following DEX treatment, and TMPRSS2 upregulation was significantly suppressed by the STAT3 inhibitor WP1066. Meanwhile, TMPRSS2 knockdown decreased DEX-induced cellular migration. TMPRSS2 and Rab11 were significantly detected in the media and the isolated exosomes from DEX-treated cells, and their colocalization was also revealed. Rab11 knockdown prevented exosomal TMPRSS2 from increasing in DEX-treated cells. In normal cultured MDA-MB-231, migration was increased by Rab11-positive exosomes isolated from DEX-treated MCF-7. Moreover, transmission electron microscopy showed that Rab11-positive exosomes enriched more components than Rab11-negative exosomes. Additionally, a reduction in ECM components fibronectin, collagen IV, matrix metallopeptidase 16, and Tenascin C was detected after DEX treatment, but was prohibited when TMPRSS2 or Rab11 were knocked down. Conclusions This study provides evidence that DEX upregulates TMPRSS2 expression via the activation of α2-adrenergic receptor/STAT3 signaling and promotes TMPRSS2 secretion in exosomes through Rab11, thus resulting in degradation of the ECM, which is responsible for DEX-induced migration of breast cancer cells.
Collapse
Affiliation(s)
- Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xing Huo
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China.,Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
25
|
Caparica R, Richard F, Brandão M, Awada A, Sotiriou C, de Azambuja E. Prognostic and Predictive Impact of Beta-2 Adrenergic Receptor Expression in HER2-Positive Breast Cancer. Clin Breast Cancer 2020; 20:262-273.e7. [PMID: 32229175 DOI: 10.1016/j.clbc.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Beta-2 adrenergic receptor (ADRB2) mediates proliferation and treatment resistance in preclinical models of human epidermal growth factor receptor 2 positive (HER2+) breast cancer. We evaluated ADRB2 gene expression as a prognostic and predictive biomarker in patients with HER2+ early breast cancer. METHODS ADRB2 expression was retrieved from HER2+ patients enrolled in the FinHer study (N = 202), and 2 public datasets containing data from patients with HER2+ early breast cancer: one including patients who did not receive systemic treatment (disease-free survival [DFS] dataset; n = 175) and another including patients who received neoadjuvant treatment (pathologic complete response [pCR] dataset; n = 207). Survival was estimated with Kaplan-Meier method and Cox regression was used for uni-multivariate analyses. ADRB2 expression was correlated with several gene signatures. RESULTS ADRB2 high expression was associated with improved DFS rates in HER2+ patients (hazard ratio [HR] 0.52; 95% confidence interval [CI] 0.32-0.84; P = .0068). No association between ADRB2 expression and pCR was observed (odds ratio 1.14; 95% CI, 0.63-2.10; P = .67). No association between ADRB2 and relapse-free survival (RFS) was observed in HER2+ patients enrolled in the FinHer study (HR 0.93; 95% CI, 0.69-1.25; P = .61). ADRB2 was associated with a low expression of angiogenesis-related (vascular endothelial growth factor -0.38, P < .001) and proliferation-related (aurora kinase A -0.36, P < .001; genomic grade index -0.028, P < .001; signal transducers and activators of transcription -0.17, P < .001) genes; and a high expression of immune-related genes (Perez +0.45, P < .001; STAT1 +0.28, P < .001; immune response gene expression module +0.29, P < .001). CONCLUSIONS Opposing our initial hypothesis, a high ADRB2 expression may be a favorable prognostic factor in patients with HER2+ early breast cancer. This association appears to be mediated by antiproliferative, antiangiogenic, and immunogenic effects of ADRB2.
Collapse
Affiliation(s)
- Rafael Caparica
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mariana Brandão
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Ahmad Awada
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Evandro de Azambuja
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| |
Collapse
|
26
|
Zhang Y, Chen C, Duan M, Liu S, Huang L, Zhou F. BioDog, biomarker detection for improving identification power of breast cancer histologic grade in methylomics. Epigenomics 2019; 11:1717-1732. [PMID: 31625763 DOI: 10.2217/epi-2019-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Breast cancer histologic grade (HG) is a well-established prognostic factor. This study aimed to select methylomic biomarkers to predict breast cancer HGs. Materials & methods: The proposed algorithm BioDog firstly used correlation bias reduction strategy to eliminate redundant features. Then incremental feature selection was applied to find the features with a high HG prediction accuracy. The sequential backward feature elimination strategy was employed to further refine the biomarkers. A comparison with existing algorithms were conducted. The HG-specific somatic mutations were investigated. Results & conclusions: BioDog achieved accuracy 0.9973 using 92 methylomic biomarkers for predicting breast cancer HGs. Many of these biomarkers were within the genes and lncRNAs associated with the HG development in breast cancer or other cancer types.
Collapse
Affiliation(s)
- Yexian Zhang
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Chaorong Chen
- College of Software, Jilin University, Changchun, Jilin 130012, PR China
| | - Meiyu Duan
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Shuai Liu
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Lan Huang
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| | - Fengfeng Zhou
- College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China
| |
Collapse
|
27
|
Rivero EM, Martinez LM, Bruque CD, Gargiulo L, Bruzzone A, Lüthy IA. Prognostic significance of α- and β2-adrenoceptor gene expression in breast cancer patients. Br J Clin Pharmacol 2019; 85:2143-2154. [PMID: 31218733 DOI: 10.1111/bcp.14030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Breast cancer is the most frequently diagnosed and leading cause of cancer death among women worldwide. It was classified within molecular intrinsic subtypes: luminal A, luminal B, human epidermal growth factor receptor 2-enriched and basal-like. Epinephrine and norepinephrine, released during stress, bind to adrenoceptors. α2 -adrenoceptors are encoded by the ADRA2A, ADRA2B and ADRA2C genes and β2 by ADRB2. METHODS We compiled several publicly available Affymetrix gene expression datasets, obtaining a large cohort of 1924 patients with distant metastasis-free survival (DMFS) data and evaluated the association between adrenoceptor expression, clinicopathological markers and outcome. RESULTS ADRA2A high expressing tumours also expressed hormone receptors and presented diminished tumour size, grade and not compromised lymph nodes. ADRB2 high expression was found in smaller, low grade, oestrogen receptor-positive tumours. Both were significantly associated with the absence of metastasis. High expression of ADRA2C was positively associated with increased tumour size and metastatic relapse. We observed a significant increase in DMFS of patients with high ADRA2A (hazard ratio 0.54, 95% CI 0.45-0.65, P < .001) and ADRB2 (0.77, 0.64-0.93, P = .006) expression and a decrease with ADRA2C high expression (1.45, 1.16-1.81, P = .001). For patients with luminal tumours, ADRA2A was the only factor that retained its significance as an independent predictor of DMFS while ADRA2C expression was an independent predictor for worse prognosis in basal-like tumours. CONCLUSIONS We herein provide new insight for a potential role of ADRA2A and ADRA2C in breast cancer. In low- and medium-income countries, their incorporation to routine immunohistochemistry analysis of biopsies or tumour samples, could provide additional low-cost prognostic factors.
Collapse
Affiliation(s)
- Ezequiel Mariano Rivero
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Carlos David Bruque
- ANLIS, Centro Nacional de Genética Médica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucia Gargiulo
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB-CONICET, Bahía Blanca, Argentina
| | - Isabel Alicia Lüthy
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|