1
|
Sun H, Yan S, Wu C, Ma J, Lu K, Cheng X, Yan W, Zhang S, Chen XD, Wu WD. Dandelion inspired microparticles with highly efficient drug delivery to deep lung. Colloids Surf B Biointerfaces 2024; 244:114134. [PMID: 39121569 DOI: 10.1016/j.colsurfb.2024.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Active pharmaceutical ingredient (API) embedded dry powder for inhalation (AeDPI) shows higher drug loading and delivery dose for directly treating various lung infections. Inspired by the dandelion, we propose a novel kind of AeDPI microparticle structure fabricated by spray freeze drying technology, which would potentially enhance the alveoli deposition efficiency. When inhaling, such microparticles are expected to be easily broken-up into fragments containing API that acts as 'seed' and could be delivered to alveoli aided by the low density 'pappus' composed of excipient. Herein, itraconazole (ITZ), a first-line drug for treating pulmonary aspergillosis, was selected as model API. TPGS, an amphiphilic surfactant, was used to achieve stable primary ITZ nanocrystal (INc) suspensions for spray freeze drying. A series of microparticles were prepared, and the dandelion-like structure was successfully achieved. The effects of feed liquid compositions and freezing parameters on the microparticle size, morphology, surface energy, crystal properties and in vitro aerosol performance were systematically investigated. The optimal sample (SF(-50)D-INc7Leu3-2) in one-way experiment showed the highest fine particle fraction of ∼ 68.96 % and extra fine particle fraction of ∼ 36.87 %, equivalently ∼ 4.60 mg and ∼ 2.46 mg could reach the lung and alveoli, respectively, when inhaling 10 mg dry powders. The response surface methodology (RSM) analysis provided the optimized design space for fabricating microparticles with higher deep lung deposition performance. This study demonstrates the advantages of AeDPI microparticle with dandelion-like structure on promoting the delivery efficiency of high-dose drug to the deep lung.
Collapse
Affiliation(s)
- Huan Sun
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Shen Yan
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Chaojie Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Jingye Ma
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Kangwei Lu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Xi Cheng
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Wenqi Yan
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Shengyu Zhang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Winston Duo Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| |
Collapse
|
2
|
Grassiri B, Esin S, Piatek ME, More O'Ferrall L, Sake JA, Griffith DM, Kavanagh K, Ehrhardt C, Maria Piras A, Batoni G, Marie Healy A. The activity of a Ga(III) catecholate complex against Aspergillus fumigatus in conditions mimicking cystic fibrosis lung and inhaled formulations for its pulmonary administration. Int J Pharm 2024; 667:124871. [PMID: 39490551 DOI: 10.1016/j.ijpharm.2024.124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Azole-resistant Aspergillus fumigatus (A. fumigatus) is an emerging worldwide pathogen. Pulmonary aspergillosis primarily affects severely immunocompromised patients and is also a particularly critical condition for cystic fibrosis (CF) patients. A recently designed gallium polypyridyl catecholate complex, GaS1, has previously demonstrated in vitro and in vivo antimicrobial activity against Gram-negative bacteria. In the present work GaS1 activity was assessed against A. fumigatus clinical isolates in a novel air-liquid-interface lung infection model, mimicking the conditions found in the CF airways. Furthermore, in this study both a solution for nebulisation and dry powders for inhalation were developed with a view to optimising GaS1 delivery to the lung. The solution for nebulisation was characterised for its osmolality and pH, while the dry powders were characterised by scanning electron microscopy, powder X-ray diffraction, thermal analysis and laser light scattering particle size analysis. The aerodynamic deposition profiles of all formulations were determined using a next generation impactor. GaS1, tested in a concentration range of 0.016-0.5 mg/mL, inhibited the growth of A. fumigatus lung isolates in a complex host-environment-mimicking medium at the non-toxic concentration of 0.063 mg/mL. A marked dose-dependent antifungal activity of GaS1 was also observed in the presence of differentiated human distal lung epithelial cells (NCI-H441) at the air liquid interface, with nearly no fungal growth detected at the macroscopic and microscopic level. A solution for nebulisation and three different dry powder inhaler formulations, prepared by spray-drying GaS1 with different concentrations of L-leucine, displayed suitable aerodynamic characteristics for GaS1 delivery to the lungs, while maintaining excellent antifungal activity. Overall, the results obtained highlight the potential of gallium-polypyridyl catecholate complexes for the management of difficult-to-treat A. fumigatus pulmonary infections.
Collapse
Affiliation(s)
- Brunella Grassiri
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Magdalena E Piatek
- Department of Biology, Maynooth University, Maynooth, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Lewis More O'Ferrall
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland
| | - Darren M Griffith
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland
| | | | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
3
|
Neoh CF, Jeong W, Kong DCM, Beardsley J, Kwok PCL, Slavin MA, Chen SCA. New and emerging roles for inhalational and direct antifungal drug delivery approaches for treatment of invasive fungal infections. Expert Rev Anti Infect Ther 2024:1-14. [PMID: 39317940 DOI: 10.1080/14787210.2024.2409408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The rising prevalence of difficult-to-treat, deep-seated invasive fungal diseases (IFD) has led to high mortality. Currently available antifungal treatments, administered predominantly orally or intravenously, may not sufficiently penetrate certain body sites, and/or are associated with systemic toxicity. Little is known about how to position alternative administration approaches such as inhalational and direct drug delivery routes. AREAS COVERED This review provides an updated overview of unconventional drug delivery strategies for managing IFD, focusing on inhalational (to target the lungs) and direct delivery methods to the central nervous system, bone/joint, and eyes. Novel compounds (e.g. opelconazole) and existing antifungals with innovative drug delivery systems currently undergoing clinical trials and/or used off-label in the clinical setting are discussed. EXPERT OPINION For both inhalational agents and direct delivery approaches, there are similar challenges that include the absence of: approved formulations for specific administration routes, delivery vehicles that are simple and safe to use whilst maintaining potency and efficiency of delivery, animal models suitable for investigating pharmacokinetic/pharmacodynamic profiles of inhaled antifungals, and consensus on the composite endpoints and intervals for of follow-up in clinical trials. To meet these challenges, cooperation of all stakeholders in drug development and regulation is required.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Wirawan Jeong
- Pharmacy Department, The Royal Women's Hospital, Melbourne, Australia
| | - David C M Kong
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Justin Beardsley
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
4
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
5
|
Bergagnini-Kolev M, Kane K, Templeton IE, Curran AK. Evaluation of the Potential for Drug-Drug Interactions with Inhaled Itraconazole Using Physiologically Based Pharmacokinetic Modelling, Based on Phase 1 Clinical Data. AAPS J 2023; 25:62. [PMID: 37344751 DOI: 10.1208/s12248-023-00828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Itraconazole is a potent inhibitor of cytochrome P450 3A4 (CYP3A4), associated with numerous drug-drug interactions (DDI). PUR1900, a dry powder formulation of itraconazole for oral inhalation, results in high lung and low systemic exposure. This project used physiologically based pharmacokinetic (PBPK) modeling to assess the DDI potential of inhaled PUR1900, using midazolam as a "victim drug." The basic and mechanistic static models evaluated the DDI potential of PUR1900, assuming 5 mg of midazolam coadministration at steady-state itraconazole exposure. Subsequently, Simcyp® PBPK simulation software and pharmacokinetic data from a Phase 1 clinical trial with PUR1900 (NCT03479411) were used to optimize an existing itraconazole PBPK model. The model was applied to investigate the potential for CYP3A4 DDI when 5 mg of midazolam is co-administered with inhaled PUR1900 at a steady state in a virtual healthy population at PUR1900 doses up to 40 mg per day. The basic static and mechanistic static models suggested a strong likelihood for DDI with inhaled PUR1900. The PBPK model was consistent with PUR1900 Phase 1 trial data. The geometric mean Cmax and AUC ratios of midazolam at a maximum dose of 40 mg PUR1900 were 1.14 and 1.26, respectively, indicating a minimal likelihood of DDI with inhaled PUR1900. The low systemic exposure of itraconazole when administered as PUR1900 results in minimal to no CYP3A4 inhibition, reducing the concern of drug-drug interactions. As the risk of CYP3A4 DDI is predicted to be significantly lower when itraconazole is administered via oral inhalation as PUR1900, it is likely that PUR1900 can be safely used for the treatment of pulmonary fungal infections in patients taking pharmaceuticals currently contraindicated with oral itraconazole.
Collapse
Affiliation(s)
| | - Katie Kane
- Pulmatrix, Inc, 36 Crosby Drive, Suite 100, Bedford, MA, 01730, USA
| | | | - Aidan K Curran
- Pulmatrix, Inc, 36 Crosby Drive, Suite 100, Bedford, MA, 01730, USA.
| |
Collapse
|
6
|
Moss RB. Severe Fungal Asthma: A Role for Biologics and Inhaled Antifungals. J Fungi (Basel) 2023; 9:jof9010085. [PMID: 36675906 PMCID: PMC9861760 DOI: 10.3390/jof9010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Allergic asthma has traditionally been treated with inhaled and systemic glucocorticosteroids. A continuum of allergic fungal airways disease associated with Aspergillus fumigatus colonization and/or atopic immune responses that encompasses fungal asthma, severe asthma with fungal sensitization and allergic bronchopulmonary aspergillosis is now recognized along a phenotypic severity spectrum of T2-high immune deviation lung disease. Oral triazoles have shown clinical, anti-inflammatory and microbiologic efficacy in this setting; in the future inhaled antifungals may improve the therapeutic index. Humanized monoclonal antibody biologic agents targeting T2-high disease also show efficacy and promise of improved control in difficult cases. Developments in these areas are highlighted in this overview.
Collapse
Affiliation(s)
- Richard B Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road, Suite 350, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Abstract
INTRODUCTION Disease due to pulmonary infection with Aspergillus, and other emerging opportunistic fungi remains a significant unmet need. Existing antifungal medicines are predominantly dosed either orally or systemically, but because of limited exposure to the lung lumen, adverse events, and problematic drug-drug interactions, inhaled treatment could provide an attractive option. AREA COVERED This review summarizes 1) the limitations of current antifungal therapy, 2) the beneficial effects of inhaled antifungal agents, 3) the clinical development of inhaled antifungal triazoles (repurposed with an innovative inhalation system or a novel inhaled agent) for the treatment of pulmonary fungal infections, and 4) the difficulties and challenges of inhaled antifungal agent development. Regrettably, details of novel inhaled devices or formulations were not covered. EXPERT OPINION Inhaled antifungal treatment could provide an attractive option by shifting the risk benefit ratio of treatment favorably. Preclinical and clinical studies with inhaled antifungal agents (off-label use) are encouraging so far. New inhaled antifungal triazoles are well tolerated in early clinical studies and warrant further clinical development. However, challenges remain and many unaddressed issues including required preclinical studies, appropriate clinical design, pharmacokinetics, delivery system(s) and regulatory process need to be resolved. Early communication with regulatory authorities is therefore recommended.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Respiratory Molecular Medicine, Genomic and Environmental Medicine section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
8
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
9
|
De Mol W, Bos S, Beeckmans H, Lagrou K, Spriet I, Verleden GM, Vos R. Antifungal Prophylaxis After Lung Transplantation: Where Are We Now? Transplantation 2021; 105:2538-2545. [PMID: 33982907 DOI: 10.1097/tp.0000000000003717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung transplantation is an important treatment option for various end-stage lung diseases. However, survival remains limited due to graft rejection and infections. Despite that fungal infections are frequent and carry a bad prognosis, there is currently no consensus on efficacy, optimal drug, route, or duration of antifungal prophylaxis. This narrative review summarizes current strategies for antifungal prophylaxis after lung transplantation. METHODS English language articles in Embase, Pubmed, UptoDate, and bibliographies were used to assess the efficacy and safety of available antifungal agents for prophylaxis in adult lung transplant recipients. RESULTS Overall, there are limited high-quality data. Universal prophylaxis is more widely used and may be preferable over targeted prophylaxis. Both formulations of inhaled amphotericin B and systemic azoles are effective at reducing fungal infection rates, yet with their own specific advantages and disadvantages. The benefit of combination regimens has yet to be proven. Considering the post-transplant timing of the onset of fungal infections, postoperative prophylaxis during the first postoperative months seems indicated for most patients. CONCLUSIONS Based on existing literature, universal antifungal prophylaxis with inhaled amphotericin B and systemic voriconazole for at least 3-6 mo after lung transplantation may be advisable, with a slight preference for amphotericin B because of its better safety profile.
Collapse
Affiliation(s)
- Wim De Mol
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department Pharmacy, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
11
|
Abstract
Anti-fungal therapies remain sub-optimal, and resistant pathogens are increasing. New therapies are desperately needed, especially options that are less toxic than most of the currently available selection. In this review, I will discuss anti-fungal therapies that are in at least phase I human trials. These include VT-1161 and VT-1598, modified azoles with a tetrazole metal-binding group; the echinocandin rezafugin; the novel β-1,3-d-glucan synthase inhibitor ibrexafungerp; fosmanogepix, a novel anti-fungal targeting Gwt1; the arylamidine T-2307; the dihydroorotate inhibitor olorofim; and the cyclic hexapeptide ASP2397. The available data including spectrum of activity, toxicity and stage of clinical development will be discussed for each of these so clinicians are aware of promising anti-fungal agents with a strong likelihood of clinical availability in the next 5–7 years.
Collapse
Affiliation(s)
- Grant Waterer
- University of Western Australia, Royal Perth Hospital, Level 3 Executive Corridor, Wellington St, Perth, 6000, Australia.
| |
Collapse
|
12
|
Liao Q, Lam JKW. Inhaled Antifungal Agents for the Treatment and Prophylaxis of Pulmonary Mycoses. Curr Pharm Des 2021; 27:1453-1468. [PMID: 33388013 DOI: 10.2174/1381612826666210101153547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary mycoses are associated with high morbidity and mortality. The current standard treatment by systemic administration is limited by inadequate local bioavailability and systemic toxic effects. Aerosolisation of antifungals is an attractive approach to overcome these problems, but no inhaled antifungal formulation is currently available for the treatment of pulmonary mycoses. Hence, the development of respirable antifungals formulations is of interest and in high demand. In this review, the recent advances in the development of antifungal formulations for pulmonary delivery are discussed, including both nebulised and dry powder formulations. Although the clinical practices of nebulised parenteral amphotericin B and voriconazole formulations (off-label use) are reported to show promising therapeutic effects with few adverse effects, there is no consensus about the dosage regimen (e.g. the dose, frequency, and whether they are used as single or combination therapy). To maximise the benefits of nebulised antifungal therapy, it is important to establish standardised protocol that clearly defines the dose and specifies the device and the administration conditions. Dry powder formulations of antifungal agents such as itraconazole and voriconazole with favourable physicochemical and aerosol properties are developed using various powder engineering technologies, but it is important to consider their suitability for use in patients with compromised lung functions. In addition, more biological studies on the therapeutic efficacy and pharmacokinetic profile are needed to demonstrate their clinical potential.
Collapse
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| |
Collapse
|
13
|
Tompkins MG, Pettit R. Beyond the Guidelines: Treatment of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Ann Pharmacother 2021; 56:181-192. [PMID: 34078140 DOI: 10.1177/10600280211022065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To review the available literature addressing alternative allergic bronchopulmonary aspergillosis (ABPA) treatment options for patients with cystic fibrosis (CF). DATA SOURCES A literature search of PubMed was performed (January 2002 to April 2021) using the following search terms: allergic bronchopulmonary aspergillosis, aspergillus-related lung disease, cystic fibrosis. Manufacturer prescribing information, clinical practice guidelines, and data from ClinicalTrials.gov were incorporated in the reviewed data. STUDY SELECTION AND DATA EXTRACTION Relevant English-language studies or those conducted in humans were considered for inclusion. DATA SYNTHESIS Available literature for alternative ABPA treatments in CF is lacking randomized controlled trials, but there is considerable support in case reports and case series describing the benefits in pediatric and adult patients. Recent literature has begun to explore the place in therapy for novel, corticosteroid-sparing treatment approaches. The alternative therapies summarized in this review all resulted in clinical improvement and subsequent discontinuation or dose reductions of oral corticosteroids, with minimal reported adverse drug effects. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Although corticosteroids are the cornerstone of ABPA management, the toxicities can be significant limitations in an already high-risk patient population. Patients may fail or become intolerant to guideline-recommended therapies and require alternative treatment approaches. CONCLUSIONS Alternative treatment modalities for ABPA in patients with CF, including azole antifungals, pulsed intravenous glucocorticoids, omalizumab, mepolizumab, and inhaled amphotericin, appear to be efficacious and well tolerated. Pharmacological properties including route of administration, storage and stability, beyond use dating, and adverse effects of the various treatment modalities must be considered when selecting a practical care plan for patients.
Collapse
Affiliation(s)
- Madeline G Tompkins
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| | - Rebecca Pettit
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| |
Collapse
|
14
|
Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. Eur J Pharm Biopharm 2021; 164:36-53. [PMID: 33895293 DOI: 10.1016/j.ejpb.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022]
Abstract
There are few studies in humans dealing with the relationship between physico-chemical properties of drugs and their systemic bioavailability after administration via oral inhalation route (Fpulm). Getting further insight in the determinants of Fpulm after oral pulmonary inhalation could be of value for drugs considered for a systemic delivery as a result of poor oral bioavailability, as well as for drugs considered for a local delivery to anticipate their undesirable systemic effects. To better delineate the parameters influencing the systemic delivery after oral pulmonary inhalation in humans, we studied the influence of physico-chemical and permeability properties obtained in silico on the rate and extent of Fpulm in a series of 77 compounds with or without marketing approval for pulmonary delivery, and intended either for local or for systemic delivery. Principal component analysis (PCA) showed mainly that Fpulm was positively correlated with Papp and negatively correlated with %TPSA, without a significant influence of solubility and ionization fraction, and no apparent link with lipophilicity and drug size parameters. As a result of the small sample set, the performance of the different models as predictive of Fpulm were quite average with random forest algorithm displaying the best performance. As a whole, the different models captured between 50 and 60% of the variability with a prediction error of less than 20%. Tmax data suggested a significant positive influence of lipophilicity on absorption rate while charge apparently had no influence. A significant linear relationship between Cmax and dose (R2 = "0.79) highlighted that Cmax was primarily dependent on dose and absorption rate and could be used to estimate Cmax in humans for new inhaled drugs.
Collapse
|
15
|
Curran AK, Hava DL. Allergic Diseases Caused by Aspergillus Species in Patients with Cystic Fibrosis. Antibiotics (Basel) 2021; 10:antibiotics10040357. [PMID: 33800658 PMCID: PMC8067098 DOI: 10.3390/antibiotics10040357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Aspergillus spp. are spore forming molds; a subset of which are clinically relevant to humans and can cause significant morbidity and mortality. A. fumigatus causes chronic infection in patients with chronic lung disease such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). In patients with CF, A. fumigatus infection can lead to allergic disease, such as allergic bronchopulmonary aspergillosis (ABPA) which is associated with high rates of hospitalizations for acute exacerbations and lower lung function. ABPA results from TH2 immune response to Aspergillus antigens produced during hyphal growth, marked by high levels of IgE and eosinophil activation. Clinically, patients with ABPA experience difficulty breathing; exacerbations of disease and are at high risk for bronchiectasis and lung fibrosis. Oral corticosteroids are used to manage aspects of the inflammatory response and antifungal agents are used to reduce fungal burden and lower the exposure to fungal antigens. As the appreciation for the severity of fungal infections has grown, new therapies have emerged that aim to improve treatment and outcomes for patients with CF.
Collapse
Affiliation(s)
| | - David L. Hava
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
- Correspondence:
| |
Collapse
|
16
|
PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections. J Fungi (Basel) 2020; 6:jof6040373. [PMID: 33348852 PMCID: PMC7765807 DOI: 10.3390/jof6040373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Disease due to pulmonary Aspergillus infection remains a significant unmet need, particularly in immunocompromised patients, patients in critical care and those with underlying chronic lung diseases. To date, treatment using inhaled antifungal agents has been limited to repurposing available systemic medicines. PC945 is a novel triazole antifungal agent, a potent inhibitor of CYP51, purpose-designed to be administered via inhalation for high local lung concentrations and limited systemic exposure. In preclinical testing, PC945 is potent versus Aspergillus spp. and Candida spp. and showed two remarkable properties in preclinical studies, in vitro and in vivo. The antifungal effects against Aspergillus fumigatus accumulate on repeat dosing and improved efficacy has been demonstrated when PC945 is dosed in combination with systemic anti-fungal agents of multiple classes. Resistance to PC945 has been induced in Aspergillus fumigatus in vitro, resulting in a strain which remained susceptible to other antifungal triazoles. In healthy volunteers and asthmatics, nebulised PC945 was well tolerated, with limited systemic exposure and an apparently long lung residency time. In two lung transplant patients, PC945 treated an invasive pulmonary Aspergillus infection that had been unresponsive to multiple antifungal agents (systemic ± inhaled) without systemic side effects or detected drug–drug interactions.
Collapse
|
17
|
Welsh KG, Holden KA, Wardlaw AJ, Satchwell J, Monteiro W, Pashley CH, Gaillard EA. Fungal sensitization and positive fungal culture from sputum in children with asthma are associated with reduced lung function and acute asthma attacks respectively. Clin Exp Allergy 2020; 51:790-800. [PMID: 33274520 DOI: 10.1111/cea.13799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Sensitization to thermotolerant fungi, including filamentous fungi and Candida albicans, is associated with poor lung function in adults with severe asthma. Data in children are lacking. Environmental exposure to fungi is linked with acute severe asthma attacks, but there are few studies reporting the presence of fungi in the airways during asthma attacks. METHODS We investigated the association between fungal sensitization and/or positive fungal sputum culture and markers of asthma severity in children with chronic and acute asthma. Sensitization was determined using serum-specific IgE and skin prick testing against a panel of five fungi. Fungal culture was focused towards detection of filamentous fungi from sputum samples. RESULTS We obtained sensitization data and/or sputum from 175 children: 99 with chronic asthma, 39 with acute asthma and 37 controls. 34.1% of children with chronic asthma were sensitized to thermotolerant fungi compared with no children without asthma (p =< 0.001). These children had worse pre-bronchodilator lung function compared with asthmatics without sensitization including a lower FEV1 /FVC ratio (p < .05). The isolation rate of filamentous fungi from sputum was higher in children with acute compared with chronic asthma. CONCLUSIONS Fungal sensitization is a feature of children with chronic asthma. Children sensitized to thermotolerant fungi have worse lung function, require more courses of systemic corticosteroids and have greater limitation of activities due to asthma. Asthma attacks in children were associated with the presence of filamentous fungi positive sputum culture. Mechanistic studies are required to establish whether fungi contribute directly to the development of acute asthma.
Collapse
Affiliation(s)
- Kathryn G Welsh
- Department of Respiratory Sciences. Institute for Lung Health, Leicester NIHR Biomedical Research Centre - Respiratory theme. University of Leicester, Leicester, UK.,Department of Paediatric Respiratory Medicine, Leicester Children's Hospital. Leicester Royal Infirmary, Leicester, UK
| | - Karl A Holden
- Department of Respiratory Sciences. Institute for Lung Health, Leicester NIHR Biomedical Research Centre - Respiratory theme. University of Leicester, Leicester, UK.,Department of Paediatric Respiratory Medicine, Leicester Children's Hospital. Leicester Royal Infirmary, Leicester, UK
| | - Andrew J Wardlaw
- Department of Respiratory Sciences. Institute for Lung Health, Leicester NIHR Biomedical Research Centre - Respiratory theme. University of Leicester, Leicester, UK.,Institute for Lung Health, Leicester NIHR Biomedical Research Centre-Respiratory and Department of Respiratory Sciences, University Hospitals Leicester, Glenfield Hospital, Leicester, UK
| | - Jack Satchwell
- Department of Respiratory Sciences. Institute for Lung Health, Leicester NIHR Biomedical Research Centre - Respiratory theme. University of Leicester, Leicester, UK
| | - William Monteiro
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre-Respiratory and Department of Respiratory Sciences, University Hospitals Leicester, Glenfield Hospital, Leicester, UK
| | - Catherine H Pashley
- Department of Respiratory Sciences. Institute for Lung Health, Leicester NIHR Biomedical Research Centre - Respiratory theme. University of Leicester, Leicester, UK
| | - Erol A Gaillard
- Department of Respiratory Sciences. Institute for Lung Health, Leicester NIHR Biomedical Research Centre - Respiratory theme. University of Leicester, Leicester, UK.,Department of Paediatric Respiratory Medicine, Leicester Children's Hospital. Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
18
|
Rapeport WG, Ito K, Denning DW. The role of antifungals in the management of patients with severe asthma. Clin Transl Allergy 2020; 10:46. [PMID: 33292524 PMCID: PMC7646070 DOI: 10.1186/s13601-020-00353-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
In patients with asthma, the inhalation of elevated amounts of fungal spores and hyphae may precipitate the onset of asthma or worsen control to the extent of being life-threatening. Sensitisation to fungi, especially Aspergillus fumigatus, is found in 15% to 48% of asthmatics in secondary care and is linked to worse asthma control, hospitalisation, bronchiectasis and fixed airflow obstruction, irrespective of whether allergic bronchopulmonary aspergillosis (ABPA) is diagnosed. ABPA represents a florid response to the presence of Aspergillus spp. but up to 70% of patients with severe asthma exhibit sensitisation to different fungi without meeting the diagnostic criteria for ABPA. The presence of persistent endobronchial colonisation with fungi, especially A. fumigatus, is linked to significantly higher rates of radiological abnormalities, lower post-bronchodilator FEV1 and significantly less reversibility to short acting bronchodilators. The therapeutic benefit for antifungal intervention in severe asthma is based on the assumption that reductions in airway fungal burden may result in improvements in asthma control, lung function and symptoms (especially cough). This contention is supported by several prospective studies which demonstrate the effectiveness of antifungals for the treatment of ABPA. Significantly, these studies confirm lower toxicity of treatment with azoles versus high dose oral corticosteroid dosing regimens for ABPA. Here we review recent evidence for the role of fungi in the progression of severe asthma and provide recommendations for the use of antifungal agents in patients with severe asthma, airways fungal infection (mycosis) and fungal colonisation. Documenting fungal airways colonisation and sensitisation in those with severe asthma opens up alternative therapy options of antifungal therapy, which may be particularly valuable in low resource settings.
Collapse
Affiliation(s)
- W Garth Rapeport
- Airways Disease, National Heart and Lung Institute, Imperial College, London, SW3 6LY, UK.
| | - Kazuhiro Ito
- Airways Disease, National Heart and Lung Institute, Imperial College, London, SW3 6LY, UK
- Pulmocide Ltd., 44 Southampton Building, London, WC2A 1AP, UK
| | - David W Denning
- Manchester Fungal Infection Group (MFIG), Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| |
Collapse
|
19
|
Yu Y, Albrecht K, Groll J, Beilhack A. Innovative therapies for invasive fungal infections in preclinical and clinical development. Expert Opin Investig Drugs 2020; 29:961-971. [DOI: 10.1080/13543784.2020.1791819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidong Yu
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
- Department of Pediatrics, University Hospital of Würzburg , Würzburg, Germany
| |
Collapse
|
20
|
Hava DL, Tan L, Johnson P, Curran AK, Perry J, Kramer S, Kane K, Bedwell P, Layton G, Swann C, Henderson D, Khan N, Connor L, McKenzie L, Singh D, Roach J. A phase 1/1b study of PUR1900, an inhaled formulation of itraconazole, in healthy volunteers and asthmatics to study safety, tolerability and pharmacokinetics. Br J Clin Pharmacol 2020; 86:723-733. [PMID: 31696544 DOI: 10.1111/bcp.14166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 01/21/2023] Open
Abstract
AIMS Oral itraconazole has variable pharmacokinetics and risks of adverse events associated with high plasma exposure. An inhalation formulation of itraconazole (PUR1900) is being developed to treat allergic bronchopulmonary aspergillosis, an allergic inflammatory disease occurring in asthmatics and patients with cystic fibrosis. METHODS A 3-part, open-label Phase 1 study was conducted to evaluate safety, tolerability and pharmacokinetics of PUR1900. Healthy volunteers (n = 5-6/cohort) received either single (Part 1) or multiple (Part 2) ascending doses of PUR1900 for up to 14 days. In Part 3 stable, adult asthmatics received a single dose of 20 mg PUR1900 or 200 mg of oral Sporanox (itraconazole oral solution) in a 2-period randomized cross-over design. Itraconazole plasma and sputum concentrations were evaluated. RESULTS None of the adverse events considered as at least possibly related to study treatment were moderate or severe, and none were classed as serious. The most common was the infrequent occurrence of mild cough. Itraconazole plasma exposure increased with increasing doses of PUR1900. After 14 days, PUR1900 resulted in plasma exposure (area under the concentration-time curve up to 24 h) 106- to 400-fold lower across doses tested (10-35 mg) than steady-state exposure reported for oral Sporanox 200 mg. In asthmatics, PUR1900 geometric mean maximum sputum concentrations were 70-fold higher and geometric mean plasma concentrations were 66-fold lower than with oral Sporanox. CONCLUSION PUR1900 was safe and well-tolerated under the study conditions. Compared to oral dosing, PUR1900 achieved higher lung and lower plasma exposure. The pharmacokinetic profile of PUR1900 suggests the potential to improve upon the efficacy and safety profile observed with oral itraconazole.
Collapse
Affiliation(s)
| | - Lisa Tan
- Lisa Tan Pharma Consulting, Kingston, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - Naimat Khan
- Medicines Evaluation Unit, The Langley Building, Wythenshawe Hospital, Wythenshawe, UK, England
| | - Lucy Connor
- Medicines Evaluation Unit, The Langley Building, Wythenshawe Hospital, Wythenshawe, UK, England
| | | | - Dave Singh
- Medicines Evaluation Unit, The Langley Building, Wythenshawe Hospital, Wythenshawe, UK, England.,University of Manchester, Manchester University NHS Hospital Trust, Manchester, UK
| | | |
Collapse
|