1
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Ustyuzhanina NE, Bilan MI, Anisimova NY, Nikogosova SP, Dmitrenok AS, Tsvetkova EA, Panina EG, Sanamyan NP, Avilov SA, Stonik VA, Kiselevskiy MV, Usov AI, Nifantiev NE. Fucosylated Chondroitin Sulfates with Rare Disaccharide Branches from the Sea Cucumbers Psolus peronii and Holothuria nobilis: Structures and Influence on Hematopoiesis. Pharmaceuticals (Basel) 2023; 16:1673. [PMID: 38139800 PMCID: PMC10748315 DOI: 10.3390/ph16121673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Two fucosylated chondroitin sulfates were isolated from the sea cucumbers Psolus peronii and Holothuria nobilis using a conventional extraction procedure in the presence of papain, followed by anion-exchange chromatography on DEAE-Sephacel. Their composition was characterized in terms of quantitative monosaccharide and sulfate content, and structures were mainly elucidated using 1D- and 2D-NMR spectroscopy. As revealed by the data of the NMR spectra, both polysaccharides along with the usual fucosyl branches contained rare disaccharide branches α-D-GalNAc4S6R-(1→2)-α-L-Fuc3S4R → attached to O-3 of the GlcA of the backbone (R = H or SO3-). The polysaccharides were studied as stimulators of hematopoiesis in vitro using mice bone marrow cells as the model. The studied polysaccharides were shown to be able to directly stimulate the proliferation of various progenitors of myelocytes and megakaryocytes as well as lymphocytes and mesenchymal cells in vitro. Therefore, the new fucosylated chondroitin sulfates can be regarded as prototype structures for the further design of GMP-compatible synthetic analogs for the development of new-generation hematopoiesis stimulators.
Collapse
Affiliation(s)
- Nadezhda E. Ustyuzhanina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Maria I. Bilan
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Natalia Yu. Anisimova
- FSBI N.E.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115458, Russia; (N.Y.A.); (M.V.K.)
| | - Sofya P. Nikogosova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Evgenia A. Tsvetkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Elena G. Panina
- Kamchatka Branch of Pacific Geographical Institute FEB RAS, Petropavlovsk-Kamchatsky 683000, Russia; (E.G.P.); (N.P.S.)
| | - Nadezhda P. Sanamyan
- Kamchatka Branch of Pacific Geographical Institute FEB RAS, Petropavlovsk-Kamchatsky 683000, Russia; (E.G.P.); (N.P.S.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (S.A.A.); (V.A.S.)
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (S.A.A.); (V.A.S.)
| | - Mikhail V. Kiselevskiy
- FSBI N.E.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115458, Russia; (N.Y.A.); (M.V.K.)
| | - Anatolii I. Usov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia; (M.I.B.); (S.P.N.); (A.S.D.); (E.A.T.); (A.I.U.)
| |
Collapse
|
3
|
STS1 and STS2 Phosphatase Inhibitor Baicalein Enhances the Expansion of Hematopoietic and Progenitor Stem Cells and Alleviates 5-Fluorouracil-Induced Myelosuppression. Int J Mol Sci 2023; 24:ijms24032987. [PMID: 36769312 PMCID: PMC9917816 DOI: 10.3390/ijms24032987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
STS1 and STS2, as the protein phosphatases that dephosphorylate FLT3 and cKIT, negatively regulate the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs). To obtain the small molecule inhibitors of STS1/STS2 phosphatase activity used to expand HSPCs both in vitro and in vivo, we establish an in vitro phosphatase assay using the recombinant proteins of the STS1/STS2 histidine phosphatase (HP) domain, by which we screened out baicalein (BC) as one of the effective inhibitors targeting STS1 and STS2. Then, we further demonstrate the direct binding of BC with STS1/STS2 using molecular docking and capillary electrophoresis and verify that BC can restore the phosphorylation of FLT3 and cKIT from STS1/STS2 inhibition. In a short-term in vitro culture, BC promotes profound expansion and enhances the colony-forming capacity of both human and mouse HSPCs along with the elevation of phospho-FLT3 and phospho-cKIT levels. Likewise, in vivo administration with BC significantly increases the proportions of short-term hematopoietic stem cells (ST-HSCs), multipotent progenitors (MPPs) and especially long-term HSCs (LT-HSCs) in healthy mouse bone marrow and increases the numbers of colony-forming units (CFU) formed by HSPCs as well. More importantly, pre-administration of BC significantly enhances the survival of mice with lethal 5-fluorouracil (5-FU) injection due to the alleviation of 5-FU-induced myelosuppression, as evidenced by the recovery of bone marrow histologic injury, the increased proportions of LT-HSCs, ST-HSCs and MPPs, and enhanced colony-forming capacity. Collectively, our study not only suggests BC as one of the small molecule candidates to stimulate HSPC expansion both in vitro and in vivo when needed in either physiologic or pathologic conditions, but also supports STS1/STS2 as potential therapeutic drug targets for HSPC expansion and hematopoietic injury recovery.
Collapse
|
4
|
Tian W, Wang Y, Zhou Y, Yao Y, Deng Y. Effects of Prophylactic Administration of Granulocyte Colony-Stimulating Factor on Peripheral Leukocyte and Neutrophil Counts Levels After Chemotherapy in Patients With Early-Stage Breast Cancer: A Retrospective Cohort Study. Front Oncol 2022; 12:777602. [PMID: 35547875 PMCID: PMC9084938 DOI: 10.3389/fonc.2022.777602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Both chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) frequently occur and can lead to dose-limiting toxicity and even fatal chemotherapy side effects. The prophylactic use of recombinant human granulocyte colony-stimulating factor (rhG-CSF), including pegylated rhG-CSF (PEG-rhG-CSF), significantly reduces the risks of CIN and FN during chemotherapy in early-stage breast cancer (ESBC) patients. However, whether the prophylactic use of granulocyte colony-stimulating factor (G-CSF), especially PEG-rhG-CSF, can influence white blood cell (WBC) counts and absolute neutrophil counts (ANCs) after finishing the chemotherapy remains unknown. Therefore, exploring the development and recovery tendency of WBC counts and ANCs during and after chemotherapy is crucial. Objective We aimed to investigate the variation tendency and recovery of WBC counts and ANCs during and after chemotherapy and evaluate the independent factors influencing leukopenia and neutropenia lasting longer after chemotherapy. We also aimed to provide individualized prophylactically leukocyte elevation therapy for breast cancer patients. Methods This single-center retrospective cohort study evaluated 515 ESBC patients who received rhG-CSF or PEG-G-CSF for prophylaxis after adjuvant or neoadjuvant chemotherapy. Blood test reports were analyzed during chemotherapy, and on a 12-month follow-up period after finishing the chemotherapy. The WBC counts and ANCs were measured to assess their variation tendency characteristics and to identify independent factors that influenced the occurrence of leukopenia and neutropenia lasting longer than 12 months after chemotherapy. Results Prophylaxis with rhG-CSF or PEG-rhG-CSF kept the mean values of WBC counts and ANCs within the normal range during chemotherapy, but a significant difference in WBC levels was detected before the end of the last chemotherapy compared to the prechemotherapy period (baseline) (p < 0.001). During the 12-month follow-up after the end of the last chemotherapy, WBC counts and ANCs gradually recovered, but the group that used only PEG-rhG-CSF (long-acting group, p WBC = 0.012) or rhG-CSF (short-acting group, p WBC = 0.0005) had better leukocyte elevation effects than the mixed treatment group (PEG-rhG-CSF mixed rhG-CSF). Besides, the short-acting group had a better neutrophil elevation effect than the longer-acting (p ANC = 0.019) and mixed (p ANC = 0.002) groups. Leukopenia was still present in 92 (17.9%) patients and neutropenia in 63 (12.2%) 12 months after the end of the last chemotherapy. The duration of leukopenia over 12 months was closely associated with the baseline WBC level (p < 0.001), G-CSF types (p = 0.027), and surgical method (p = 0.041). Moreover, the duration of neutropenia over 12 months was closely related to the baseline ANC (p < 0.001), G-CSF types (p = 0.043), and molecular typing (p = 0.025). Conclusion The prophylactic application of G-CSF effectively stabilized the WBC counts and ANCs during chemotherapy in ESBC patients. Nevertheless, the recovery of WBC counts and ANCs after chemotherapy varied between different G-CSF treatment groups. The risk of leukopenia and neutropenia persisting for more than 12 months after chemotherapy was associated with G-CSF types, the baseline level of WBC count/ANCs, surgical method, and molecular typing.
Collapse
Affiliation(s)
- Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wang X, Liu X, Wang H. Combination regimen of granulocyte colony-stimulating factor and recombinant human thrombopoietin improves the curative effect on elderly patients with leukemia through inducing pyroptosis and ferroptosis of leukemia cells. Cancer Gene Ther 2022; 29:1742-1750. [PMID: 35768562 PMCID: PMC9663303 DOI: 10.1038/s41417-022-00497-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
Leukemia ranks as the one of most common causes of death from tumor. 51.4% of patients with leukemia are over 65 years old. However, the median overall survival (OS) of elderly leukemia patients is less than one year. It is urgent to explore more effective treatments for elderly patients with leukemia. Our recent prospective phase II single-arm study has revealed that combination regimen of granulocyte colony-stimulating factor (G-CSF) and recombinant human thrombopoietin (rhTPO) could improve the curative effect on elderly patients with leukemia, yet the precise mechanism remains unknown. This study demonstrated that combination of G-CSF and rhTPO showed greater effect on suppressing leukemia growth than G-CSF or rhTPO alone in vitro and in vivo. Mechanistically, G-CSF induced pyroptosis through ELANE in leukemia cells. Besides, rhTPO triggered ferroptosis by EP300 in leukemia cells. Moreover, rhTPO suppressed glutathione peroxidase 4 (GPX4) expression to induce ferroptosis through blocking the interaction between EP300 and GPX4 gene promoter via associating with EP300. In summary, this study illuminated that combination regimen of G-CSF and rhTPO improved the curative effect on elderly patients with leukemia through inducing pyroptosis and ferroptosis of leukemia cells. Therefore, our results provided a theoretical basis for combination regimen of G-CSF and rhTPO treating leukemia and potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Xiaobin Wang
- grid.412449.e0000 0000 9678 1884Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110035 China
| | - Xiaoyu Liu
- grid.412449.e0000 0000 9678 1884Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110035 China
| | - Huihan Wang
- grid.412449.e0000 0000 9678 1884Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110035 China
| |
Collapse
|
6
|
Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokinet Pharmacodyn 2021; 49:19-37. [PMID: 34671863 PMCID: PMC8528185 DOI: 10.1007/s10928-021-09790-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex diseases and improve drug development.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
7
|
Understanding Normal and Pathological Hematopoietic Stem Cell Biology Using Mathematical Modelling. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Deyme L, Benzekry S, Ciccolini J. Mechanistic models for hematological toxicities: Small is beautiful. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:396-398. [PMID: 33638917 PMCID: PMC8129710 DOI: 10.1002/psp4.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Laure Deyme
- SMARTc Unit, Centre for Research in Cancer of Marseille, Inserm U1068, Aix Marseille Univ, Marseille, France
| | - Sébastien Benzekry
- Monc Team, INRIA Bordeaux Sud Ouest Institute for Mathematics of Bordeaux, CNRS, UMR 5251, Bordeaux University, Talence, France
| | - Joseph Ciccolini
- SMARTc Unit, Centre for Research in Cancer of Marseille, Inserm U1068, Aix Marseille Univ, Marseille, France
| |
Collapse
|
9
|
Alfonso S, Jenner AL, Craig M. Translational approaches to treating dynamical diseases through in silico clinical trials. CHAOS (WOODBURY, N.Y.) 2020; 30:123128. [PMID: 33380031 DOI: 10.1063/5.0019556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The primary goal of drug developers is to establish efficient and effective therapeutic protocols. Multifactorial pathologies, including dynamical diseases and complex disorders, can be difficult to treat, given the high degree of inter- and intra-patient variability and nonlinear physiological relationships. Quantitative approaches combining mechanistic disease modeling and computational strategies are increasingly leveraged to rationalize pre-clinical and clinical studies and to establish effective treatment strategies. The development of clinical trials has led to new computational methods that allow for large clinical data sets to be combined with pharmacokinetic and pharmacodynamic models of diseases. Here, we discuss recent progress using in silico clinical trials to explore treatments for a variety of complex diseases, ultimately demonstrating the immense utility of quantitative methods in drug development and medicine.
Collapse
Affiliation(s)
- Sofia Alfonso
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Morgan Craig
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
10
|
Cassidy T, Humphries AR, Craig M, Mackey MC. Characterizing Chemotherapy-Induced Neutropenia and Monocytopenia Through Mathematical Modelling. Bull Math Biol 2020; 82:104. [PMID: 32737602 DOI: 10.1007/s11538-020-00777-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
In spite of the recent focus on the development of novel targeted drugs to treat cancer, cytotoxic chemotherapy remains the standard treatment for the vast majority of patients. Unfortunately, chemotherapy is associated with high hematopoietic toxicity that may limit its efficacy. We have previously established potential strategies to mitigate chemotherapy-induced neutropenia (a lack of circulating neutrophils) using a mechanistic model of granulopoiesis to predict the interactions defining the neutrophil response to chemotherapy and to define optimal strategies for concurrent chemotherapy/prophylactic granulocyte colony-stimulating factor (G-CSF). Here, we extend our analyses to include monocyte production by constructing and parameterizing a model of monocytopoiesis. Using data for neutrophil and monocyte concentrations during chemotherapy in a large cohort of childhood acute lymphoblastic leukemia patients, we leveraged our model to determine the relationship between the monocyte and neutrophil nadirs during cyclic chemotherapy. We show that monocytopenia precedes neutropenia by 3 days, and rationalize the use of G-CSF during chemotherapy by establishing that the onset of monocytopenia can be used as a clinical marker for G-CSF dosing post-chemotherapy. This work therefore has important clinical applications as a comprehensive approach to understanding the relationship between monocyte and neutrophils after cyclic chemotherapy with or without G-CSF support.
Collapse
Affiliation(s)
- Tyler Cassidy
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Antony R Humphries
- Department of Mathematics and Statistics, McGill University, Montréal, QC, H3A 0B9, Canada.,Department of Physiology, McGill University, Montréal, QC, H3A 0B9, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada. .,CHU Sainte-Justine Research Centre, University of Montreal, Montréal, Canada.
| | - Michael C Mackey
- Department of Physiology, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada.,Department of Mathematics and Statistics, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada.,Department of Physics, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada
| |
Collapse
|