1
|
Arvanitakis K, Koufakis T, Kalopitas G, Papadakos SP, Kotsa K, Germanidis G. Management of type 2 diabetes in patients with compensated liver cirrhosis: Short of evidence, plenty of potential. Diabetes Metab Syndr 2024; 18:102935. [PMID: 38163417 DOI: 10.1016/j.dsx.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Treatment of type 2 diabetes (T2D) in patients with compensated cirrhosis is challenging due to hypoglycemic risk, altered pharmacokinetics, and the lack of robust evidence on the risk/benefit ratio of various drugs. Suboptimal glycemic control accelerates the progression of cirrhosis, while the frequent coexistence of nonalcoholic fatty liver disease (NAFLD) with T2D highlights the need for a multifactorial therapeutic approach. METHODS A literature search was performed in Medline, Google Scholar and Scopus databases till July 2023, using relevant keywords to extract studies regarding the management of T2D in patients with compensated cirrhosis. RESULTS Metformin, sodium-glucose co-transporter-2 inhibitors (SGLT2i), and glucagon-like peptide-1 receptor agonists (GLP-1 RA) are promising treatment options for patients with T2D and compensated liver cirrhosis, offering good glycemic control with minimal risk of hypoglycemia, while their pleiotropic actions confer benefits on NAFLD and body weight, and decrease cardiorenal risk. Sulfonylureas cause hypoglycemia, thus should be avoided, while in specific studies, dipeptidyl peptidase-4 inhibitors have been correlated with increased risk of decompensation and variceal bleeding. Despite the benefits of thiazolidinediones in nonalcoholic steatohepatitis, concerns about edema and weight gain limit their use in compensated cirrhosis. Insulin does not exert hepatotoxic effects and can be administered safely in combination with other drugs; however, the risk of hypoglycemia should be considered. CONCLUSIONS The introduction of new hepatoprotective diabetes drugs into clinical practice, including tirzepatide, SGLT2i, and GLP-1 RA, sets the stage for future trials to investigate the ideal therapeutic regimen for people with T2D and compensated cirrhosis.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
2
|
Cumhur Cure M, Cure E. Why have SGLT2 Inhibitors Failed to Achieve the Desired Success in COVID-19? Curr Pharm Des 2024; 30:1149-1156. [PMID: 38566383 DOI: 10.2174/0113816128300162240322075423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The SARS-CoV-2 virus emerged towards the end of 2019 and caused a major worldwide pandemic lasting at least 2 years, causing a disease called COVID-19. SARS-CoV-2 caused a severe infection with direct cellular toxicity, stimulation of cytokine release, increased oxidative stress, disruption of endothelial structure, and thromboinflammation, as well as angiotensin-converting enzyme 2 (ACE2) down-regulation-mediated renin-angiotensin system (RAS) activation. In addition to glucosuria and natriuresis, sodium-glucose transport protein 2 (SGLT2) inhibitors (SGLT2i) cause weight loss, a decrease in glucose levels with an insulin-independent mechanism, an increase in erythropoietin levels and erythropoiesis, an increase in autophagy and lysosomal degradation, Na+/H+-changer inhibition, prevention of ischemia/reperfusion injury, oxidative stress and they have many positive effects such as reducing inflammation and improving vascular function. There was great anticipation for SGLT2i in treating patients with diabetes with COVID-19, but current data suggest they are not very effective. Moreover, there has been great confusion in the literature about the effects of SGLT2i on COVID-19 patients with diabetes . Various factors, including increased SGLT1 activity, lack of angiotensin receptor blocker co-administration, the potential for ketoacidosis, kidney injury, and disruptions in fluid and electrolyte levels, may have hindered SGLT2i's effectiveness against COVID-19. In addition, the duration of use of SGLT2i and their impact on erythropoiesis, blood viscosity, cholesterol levels, and vitamin D levels may also have played a role in their failure to treat the virus. This article aims to uncover the reasons for the confusion in the literature and to unravel why SGLT2i failed to succeed in COVID-19 based on some solid evidence as well as speculative and personal perspectives.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Medilab Laboratory and Imaging Center, Department of Biochemistry, Sisli, Istanbul, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Beylikdüzü Medilife Hospital, Yakuplu Mh, Beylikduzu, Istanbul, Turkey
| |
Collapse
|
3
|
Zhang Y, Xie P, Li Y, Chen Z, Shi A. Mechanistic evaluation of the inhibitory effect of four SGLT-2 inhibitors on SGLT 1 and SGLT 2 using physiologically based pharmacokinetic (PBPK) modeling approaches. Front Pharmacol 2023; 14:1142003. [PMID: 37342592 PMCID: PMC10277867 DOI: 10.3389/fphar.2023.1142003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Sodium-glucose co-transporter type 2 (SGLT 2, gliflozins) inhibitors are potent orally active drugs approved for managing type 2 diabetes. SGLT 2 inhibitors exert a glucose-lowering effect by suppressing sodium-glucose co-transporters 1 and 2 in the intestinal and kidney proximal tubules. In this study, we developed a physiologically based pharmacokinetic (PBPK) model and simulated the concentrations of ertugliflozin, empagliflozin, henagliflozin, and sotagliflozin in target tissues. We used the perfusion-limited model to illustrate the disposition of SGLT 2 inhibitors in vivo. The modeling parameters were obtained from the references. Simulated steady-state plasma concentration-time curves of the ertugliflozin, empagliflozin, henagliflozin, and sotagliflozin are similar to the clinically observed curves. The 90% prediction interval of simulated excretion of drugs in urine captured the observed data well. Furthermore, all corresponding model-predicted pharmacokinetic parameters fell within a 2-fold prediction error. At the approved doses, we estimated the effective concentrations in intestinal and kidney proximal tubules and calculated the inhibition ratio of SGLT transporters to differentiate the relative inhibition capacities of SGLT1 and 2 in each gliflozin. According to simulation results, four SGLT 2 inhibitors can nearly completely inhibit SGLT 2 transporter at the approved dosages. Sotagliflozin exhibited the highest inhibition activity on SGLT1, followed by ertugliflozin, empagliflozin, and henagliflozin, which showed a lower SGLT 1 inhibitory effect. The PBPK model successfully simulates the specific target tissue concentration that cannot be measured directly and quantifies the relative contribution toward SGLT 1 and 2 for each gliflozin.
Collapse
|
4
|
Ferguson M, Vel J, Phan V, Ali R, Mabe L, Cherner A, Doan T, Manakatt B, Jose M, Powell AR, McKinney K, Serag H, Sallam HS. Coronavirus Disease 2019, Diabetes, and Inflammation: A Systemic Review. Metab Syndr Relat Disord 2023; 21:177-187. [PMID: 37130311 DOI: 10.1089/met.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
People with cardiometabolic diseases [namely type 2 diabetes (T2D), obesity, or metabolic syndrome] are more susceptible to coronavirus disease 2019 (COVID-19) infection and endure more severe illness and poorer outcomes. Hyperinflammation has been suggested as a common pathway for both diseases. To examine the role of inflammatory biomarkers shared between COVID-19 and cardiometabolic diseases, we reviewed and evaluated published data using PubMed, SCOPUS, and World Health Organization COVID-19 databases for English articles from December 2019 to February 2022. Of 248 identified articles, 50 were selected and included. We found that people with diabetes or obesity have (i) increased risk of COVID-19 infection; (ii) increased risk of hospitalization (those with diabetes have a higher risk of intensive care unit admissions) and death; and (iii) heightened inflammatory and stress responses (hyperinflammation) to COVID-19, which worsen their prognosis. In addition, COVID-19-infected patients have a higher risk of developing T2D, especially if they have other comorbidities. Treatments controlling blood glucose levels and or ameliorating the inflammatory response may be valuable for improving clinical outcomes in these patient populations. In conclusion, it is critical for health care providers to clinically evaluate hyperinflammatory states to drive clinical decisions for COVID-19 patients.
Collapse
Affiliation(s)
- Monique Ferguson
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jaysonn Vel
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vincent Phan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Roshaneh Ali
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lainie Mabe
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Annie Cherner
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thao Doan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bushra Manakatt
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mini Jose
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Audrey Ross Powell
- University of Texas Medical Branch Alumni, Galveston, Texas, USA
- Madrigal Pharmaceuticals, Conshohocken, Pennsylvania, USA
| | - Kevin McKinney
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hani Serag
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hanaa S Sallam
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo Ferreira L, Trettel CDS, Gimenes GM, da Silva AF, Sousa-Filho CPB, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges FT, de Barros MP, Cury-Boaventura MF, Bertolini GL, Cassolla P, Marzuca-Nassr GN, Vitzel KF, Pithon-Curi TC, Masi LN, Curi R, Gorjao R, Hirabara SM. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol 2022; 13:1037467. [PMID: 36439786 PMCID: PMC9684198 DOI: 10.3389/fmicb.2022.1037467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.
Collapse
Affiliation(s)
| | - Luiz Eduardo Rodrigues
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Amanda Lins Alecrim-Zeza
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Liliane de Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Caio dos Santos Trettel
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gabriela Mandú Gimenes
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Adelson Fernandes da Silva
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Department of Molecular Pathobiology, University of New York, New York, NY, United States
| | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fernanda Teixeira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Paes de Barros
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, Brazil
| | - Renata Gorjao
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Kumar R, Kumar V, Arya R, Anand U, Priyadarshi RN. Association of COVID-19 with hepatic metabolic dysfunction. World J Virol 2022; 11:237-251. [PMID: 36188741 PMCID: PMC9523326 DOI: 10.5501/wjv.v11.i5.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to be a global problem with over 438 million cases reported so far. Although it mostly affects the respiratory system, the involvement of extrapulmonary organs, including the liver, is not uncommon. Since the beginning of the pandemic, metabolic com-orbidities, such as obesity, diabetes, hypertension, and dyslipidemia, have been identified as poor prognostic indicators. Subsequent metabolic and lipidomic studies have identified several metabolic dysfunctions in patients with COVID-19. The metabolic alterations appear to be linked to the course of the disease and inflammatory reaction in the body. The liver is an important organ with high metabolic activity, and a significant proportion of COVID-19 patients have metabolic comorbidities; thus, this factor could play a key role in orchestrating systemic metabolic changes during infection. Evidence suggests that metabolic dysregulation in COVID-19 has both short- and long-term metabolic implications. Furthermore, COVID-19 has adverse associations with metabolic-associated fatty liver disease. Due to the ensuing effects on the renin-angiotensin-aldosterone system and ammonia metabolism, COVID-19 can have significant implications in patients with advanced chronic liver disease. A thorough understanding of COVID-19-associated metabolic dysfunction could lead to the identification of important plasma biomarkers and novel treatment targets. In this review, we discuss the current understanding of metabolic dysfunction in COVID-19, focusing on the liver and exploring the underlying mechanistic pathogenesis and clinical implications.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Vijay Kumar
- Department of Medicine, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rahul Arya
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Utpal Anand
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rajeev Nayan Priyadarshi
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| |
Collapse
|
7
|
Koufakis T, Doumas M, Zebekakis P, Kotsa K. Dual sodium-glucose cotransporter (SGLT) 1/2 versus pure SGLT2 inhibitors: two distinct drug categories or one class with multiple faces? Expert Opin Pharmacother 2022; 23:1497-1502. [PMID: 35962542 DOI: 10.1080/14656566.2022.2113385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION According to their selectivity for sodium-glucose cotransporters (SGLT) 1 and 2, gliflozins could be subdivided into two additional categories: pure SGLT2 inhibitors, which are highly selective for SGLT2, and dual SGLT1/2 inhibitors which, in addition to SGLT2, exhibit strong inhibitory activity for SGLT1. AREAS COVERED This article aims to discuss whether the pharmacological differences between the two subtypes of gliflozins could be translated into different efficacy and safety characteristics that might be important for clinical practice. EXPERT OPINION In large cardiovascular outcome trials, dual inhibitors have shown a unique efficacy profile in terms of reducing glycemia in patients with severe renal impairment and decreasing the risk of atherosclerotic outcomes. These features do not characterize selective SGLT2 inhibitors and could be attributed to the parallel inhibition of SGLT1. The increased risk of diarrhea and severe hypoglycemia observed only with dual inhibitors is probably related to their action in the gut and brain, respectively. However, differences in populations included in various studies should be considered when attempting to translate their findings into clinical practice; therefore, head-to-head trials are needed to shed more light on this issue and provide clear guidance to clinicians.
Collapse
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
8
|
Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. The effects of sodium-glucose cotransporter 2 inhibitors on hepatocellular carcinoma: From molecular mechanisms to potential clinical implications. Pharmacol Res 2022; 181:106261. [PMID: 35588918 DOI: 10.1016/j.phrs.2022.106261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) occurs in the setting of prolonged liver inflammation, hepatocyte necrosis and regeneration in patients with cirrhosis. Despite the progress made in the medical management of the disorder during the past decades, the available pharmacological options remain limited, leading to poor survival rates and quality of life for patients with HCC. Sodium-glucose cotransporter 2 inhibitors (SGLT2) originally emerged as drugs for the treatment of hyperglycemia; however, they soon demonstrated important extra-glycemic properties, which led to their evaluation as potential treatments for a wide range of non-metabolic disorders. Evidence from animal studies suggests that SGLT2i have the potential to modulate molecular pathways that affect hallmarks of HCC, including inflammatory responses, cell proliferation, and oxidative stress. The impressive benefits of neurohormonal modulation observed with SGLT2i in congestive heart failure set the stage for human trials in cirrhotic ascites. However, future studies need to evaluate several aspects of the benefit to risk ratio of such a therapeutic strategy, including the co-administration with antineoplastic agents and diuretics, infections, use in hospitalized individuals, renal safety and hypovolemia. In this narrative review, we discuss the putative role of SGLT2i in the treatment of patients with HCC, starting with the mechanisms that could justify a possible benefit and ending with potential clinical implications and areas for future research.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| |
Collapse
|
9
|
Khazaal S, Harb J, Rima M, Annweiler C, Wu Y, Cao Z, Abi Khattar Z, Legros C, Kovacic H, Fajloun Z, Sabatier JM. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules 2022; 27:2903. [PMID: 35566253 PMCID: PMC9101946 DOI: 10.3390/molecules27092903] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has expanded across the world since its discovery in Wuhan (China) and has had a significant impact on people's lives and health. Long COVID is a term coined by the World Health Organization (WHO) to describe a variety of persistent symptoms after acute SARS-CoV-2 infection. Long COVID has been demonstrated to affect various SARS-CoV-2-infected persons, independently of the acute disease severity. The symptoms of long COVID, like acute COVID-19, consist in the set of damage to various organs and systems such as the respiratory, cardiovascular, neurological, endocrine, urinary, and immune systems. Fatigue, dyspnea, cardiac abnormalities, cognitive and attention impairments, sleep disturbances, post-traumatic stress disorder, muscle pain, concentration problems, and headache were all reported as symptoms of long COVID. At the molecular level, the renin-angiotensin system (RAS) is heavily involved in the pathogenesis of this illness, much as it is in the acute phase of the viral infection. In this review, we summarize the impact of long COVID on several organs and tissues, with a special focus on the significance of the RAS in the disease pathogenesis. Long COVID risk factors and potential therapy approaches are also explored.
Collapse
Affiliation(s)
- Shaymaa Khazaal
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouene Campus, Sin El Fil P.O. Box 55251, Lebanon;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital & Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638, SFR Confluences, University of Angers, 44312 Angers, France;
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeidet El-Matn, Beirut P.O. Box 90656, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, University of Angers, 49000, France;
| | - Hervé Kovacic
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| |
Collapse
|
10
|
Impact of untreated diabetes and COVID-19-related diabetes on severe COVID-19. Heliyon 2022; 8:e08801. [PMID: 35079646 PMCID: PMC8776352 DOI: 10.1016/j.heliyon.2022.e08801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a common comorbidity in patients with coronavirus disease (COVID-19) and contributes significantly to COVID-19 severity. We aimed to investigate the association between diabetic status and severe COVID-19. This prospective study included all COVID-19 patients admitted to our hospital, who were divided into four groups according to their diabetic status: no diabetes, treated diabetes, untreated diabetes, and COVID-19-related diabetes. Severe COVID-19 was defined as a condition that required the use of a ventilator. Of the 114 patients included in this study, 26 had severe COVID-19. The adjusted odds ratio (OR; 95% confidence interval [CI]) for severe COVID-19 was significantly higher in the treated diabetes, untreated diabetes, and COVID-19-related diabetes groups than in the no diabetes group (OR: 5.9, 95% CI [1.2–27.9]; OR 12.6, 95% CI [1.8–86.4]; and OR: 9.3, 95% [1.1–81.4], respectively). Findings from this study showed that the risk of severe COVID-19 was increased in treated diabetes, untreated diabetes, and COVID-19-related diabetes compared to no diabetes. Furthermore, the OR for severe COVID-19 was greater in untreated diabetes and COVID-19-related diabetes than in treated diabetes.
Collapse
|
11
|
Koufakis T, Maltese G, Metallidis S, Zebekakis P, Kotsa K. Looking deeper into the findings of DARE-19: Failure or an open door to future success? Pharmacol Res 2021; 173:105872. [PMID: 34487851 PMCID: PMC8416358 DOI: 10.1016/j.phrs.2021.105872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Giuseppe Maltese
- Department of Diabetes and Endocrinology, Epsom & St Helier University Hospitals, Surrey SM5 1AA, UK; Unit for Metabolic Medicine, Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College, London WC2R 2LS, UK
| | - Symeon Metallidis
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece; Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| |
Collapse
|
12
|
Koufakis T, Metallidis S, Zebekakis P, Kotsa K. Intestinal SGLT1 as a therapeutic target in COVID-19-related diabetes: A "two-edged sword" hypothesis. Br J Clin Pharmacol 2021; 87:3643-3646. [PMID: 33684969 PMCID: PMC8251113 DOI: 10.1111/bcp.14800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging data are linking coronavirus disease 2019 (COVID‐19) with an increased risk of developing new‐onset diabetes. The gut has been so far out of the frame of the discussion on the pathophysiology of COVID‐19‐induced diabetes, with the pancreas, liver, and adipose tissue being under the spotlight of medical research. Sodium‐glucose co‐transporters (SGLT) 1 represent important regulators of glucose absorption, expressed in the small intestine where they mediate almost all sodium‐dependent glucose uptake. Similar to what happens in diabetes and other viral infections, SGLT1 upregulation could result in increased intestinal glucose absorption and subsequently promote the development of hyperglycaemia in COVID‐19. Considering the above, the question whether dual SGLT (1 and 2) inhibition could contribute to improved outcomes in such cases sounds challenging, deserving further evaluation. Future studies need to clarify whether putative benefits of dual SGLT inhibition in COVID‐19 outweigh potential risks, particularly with respect to drug‐induced euglycaemic diabetic ketoacidosis, gastrointestinal side effects, and compromised host response to pathogens.
Collapse
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Symeon Metallidis
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.,Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|