1
|
Rosh JR, Turner D, Hyams JS, Dubinsky M, Griffiths AM, Cohen SA, Hung Lo K, Kim L, Volger S, Zhang R, Strauss R, Conklin LS. Outcomes in Adult Inflammatory Bowel Disease Clinical Trials: Assessment of Similarity Among Participants with Adolescent-onset and Adult-onset Disease. J Crohns Colitis 2024; 18:1250-1260. [PMID: 38408273 DOI: 10.1093/ecco-jcc/jjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND AND AIMS Most paediatric inflammatory bowel disease [IBD] studies are performed after medications are approved in adults, and the majority of participants in these studies are adolescents. We hypothesised that adolescent-onset IBD is not fundamentally different from adult-onset IBD. If this is correct, the value of delaying access to novel drugs in adolescents becomes questioned. METHODS Data from 11 randomised, double-blind, placebo-controlled, adult Phases 2 and 3 trials of four biologics were analysed. Participants were categorised as having adolescent- or adult-onset disease [diagnosed 12 to <18, or ≥18 years]. Multivariable modelling explored the association between age at diagnosis and response to treatment, after adjustment for disease duration, extent, and severity at baseline. Data from dose arms were pooled to evaluate similarity of therapeutic response between adolescent- and adult-onset IBD within the same trial [not between doses or across trials]. Ratios of odds ratios [ORs] between the two groups were evaluated. RESULTS Data from 6283 study participants (2575 with Crohn's disease [CD], 3708 with ulcerative colitis [UC]) were evaluated. Of 2575 study participants with CD, 325 were 12-<18 years old at diagnosis; 836 participants [32.4%] received placebo. Of 3708 participants with UC, 221 were 12-<18 years old at diagnosis; 1212 [33%] were receiving placebo. The majority of the ratios of ORs were within 2-fold, suggesting that responses in adolescent- and adult-onset participants are generally similar. CONCLUSION Data presented lend support for extrapolating efficacy of biologics from adults to adolescents with IBD, which would facilitate earlier labelling and patient access.
Collapse
Affiliation(s)
- Joel R Rosh
- Division of Pediatric Gastroenterology, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Dan Turner
- Juliet Keidan Institute of Pediatric Gastroenterology, Shaare Zedek Medical Center, Hebrew University of Jerusalem, Israel
| | - Jeffrey S Hyams
- Division of Pediatric Gastroenterology, Connecticut Children's, Hartford, CT, USA
| | - Marla Dubinsky
- Division of Pediatric Gastroenterology, Mount Sinai Medical Center, New York, NY, USA
| | - Anne M Griffiths
- Division of Pediatric Gastroenterology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stanley A Cohen
- Division of Pediatric Gastroenterology, Children's Center for Digestive Health Care, Atlanta, GA, USA
| | - Kim Hung Lo
- Statistics and Decision Sciences, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Lilianne Kim
- Statistics and Decision Sciences, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Sheri Volger
- Pediatric Development Team, Janssen Research & Development, Spring House, PA, USA
| | - Renping Zhang
- Data Analytics, Janssen Research & Development, Spring House, PA, USA
| | - Richard Strauss
- Pediatric Development Team, Janssen Research & Development, Spring House, PA, USA
| | - Laurie S Conklin
- Child Health Innovation Leadership Department, Johnson & Johnson, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Grover Z, Day AS. Novel pharmacological developments in the management of paediatric inflammatory bowel disease. J Paediatr Child Health 2024; 60:162-163. [PMID: 38923605 DOI: 10.1111/jpc.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Zubin Grover
- Perth Children's Hospital, Perth, Western Australia, Australia
| | - Andrew S Day
- Cure Kids Chair of Paediatric Research, Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
- Discipline of Paediatrics and Child Health, School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Machado TR, Honorio T, Souza Domingos TF, Candido de Paula DDS, Cabral LM, Rodrigues CR, Abrahim-Vieira BA, Teles de Souza AM. Physiologically based pharmacokinetic modelling of semaglutide in children and adolescents with healthy and obese body weights. Br J Clin Pharmacol 2023; 89:3175-3194. [PMID: 37293836 DOI: 10.1111/bcp.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/23/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
AIMS To develop paediatric physiologically based pharmacokinetic modelling (PBPK) models of semaglutide to estimate the pharmacokinetic profile for subcutaneous injections in children and adolescents with healthy and obese body weights. METHODS Pharmacokinetic modelling and simulations of semaglutide subcutaneous injections were performed using the Transdermal Compartmental Absorption & Transit model implemented in GastroPlus v.9.5 modules. A PBPK model of semaglutide was developed and verified in the adult population, by comparing the simulated plasma exposure with the observed data, and further scaled to the paediatric populations with normal and obese body weight. RESULTS The semaglutide PBPK model was successfully developed in adults and scaled to the paediatric population. Our paediatric PBPK simulations indicated a significant increase in maximum plasma concentrations for the 10-14 years' paediatric population with healthy body weights, which was higher than the observed values in adults at the reference dose. Since gastrointestinal adverse events are related to increased semaglutide concentrations, peak concentrations outside the target range may represent a safety risk for this paediatric age group. Besides, paediatric PBPK models indicated that body weight was inversely related to semaglutide maximum plasma concentration, corroborating the consensus on the influence of body weight on semaglutide PK in adults. CONCLUSION Paediatric PBPK was successfully achieved using a top-down approach and drug-related parameters. The development of unprecedented PBPK models will support paediatric clinical therapy for applying aid-safe dosing regimens for the paediatric population in diabetes treatment.
Collapse
Affiliation(s)
- Thayná Rocco Machado
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Honorio
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Dailane da Silva Candido de Paula
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos R Rodrigues
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara A Abrahim-Vieira
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Mendonça Teles de Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Rose RH, Sepp A, Stader F, Gill KL, Liu C, Gardner I. Application of physiologically-based pharmacokinetic models for therapeutic proteins and other novel modalities. Xenobiotica 2022; 52:840-854. [PMID: 36214113 DOI: 10.1080/00498254.2022.2133649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The past two decades have seen diversification of drug development pipelines and approvals from traditional small molecule therapies to alternative modalities including monoclonal antibodies, engineered proteins, antibody drug conjugates (ADCs), oligonucleotides and gene therapies. At the same time, physiologically-based pharmacokinetic (PBPK) models for small molecules have seen increased industry and regulatory acceptance.This review focusses on the current status of the application of PBPK models to these newer modalities and give a perspective on the successes, challenges and future directions of this field.There is greatest experience in the development of PBPK models for therapeutic proteins, and PBPK models for ADCs benefit from prior experience for both therapeutic proteins and small molecules. For other modalities, the application of PBPK models is in its infancy.Challenges are discussed and a common theme is lack of availability of physiological and experimental data to characterise systems and drug parameters to enable a priori prediction of pharmacokinetics. Furthermore, sufficient clinical data are required to build confidence in developed models.The PBPK modelling approach provides a quantitative framework for integrating knowledge and data from multiple sources and can be built on as more data becomes available.
Collapse
Affiliation(s)
- Rachel H Rose
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Armin Sepp
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Felix Stader
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Katherine L Gill
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Cong Liu
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Iain Gardner
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
5
|
Petric Z, Goncalves J, Paixao P. Under the Umbrella of Clinical Pharmacology: Inflammatory Bowel Disease, Infliximab and Adalimumab, and a Bridge to an Era of Biosimilars. Pharmaceutics 2022; 14:1766. [PMID: 36145514 PMCID: PMC9505802 DOI: 10.3390/pharmaceutics14091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) have revolutionized the treatment of many chronic inflammatory diseases, including inflammatory bowel disease (IBD). IBD is a term that comprises two quite similar, yet distinctive, disorders-Crohn's disease (CD) and ulcerative colitis (UC). Two blockbuster MAbs, infliximab (IFX) and adalimumab (ADL), transformed the pharmacological approach of treating CD and UC. However, due to the complex interplay of pharmacology and immunology, MAbs face challenges related to their immunogenicity, effectiveness, and safety. To ease the burden of IBD and other severe diseases, biosimilars have emerged as a cost-effective alternative to an originator product. According to the current knowledge, biosimilars of IFX and ADL in IBD patients are shown to be as safe and effective as their originators. The future of biosimilars, in general, is promising due to the potential of making the health care system more sustainable. However, their use is accompanied by misconceptions regarding their effectiveness and safety, as well as by controversy regarding their interchangeability. Hence, until a scientific consensus is achieved, scientific data on the long-term effectiveness and safety of biosimilars are needed.
Collapse
Affiliation(s)
- Zvonimir Petric
- Department of Pharmacological Sciences, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal
| | - Joao Goncalves
- Biopharmaceutical and Molecular Biotechnology Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal
| | - Paulo Paixao
- Department of Pharmacological Sciences, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal
| |
Collapse
|
6
|
Gill KL, Jones HM. Opportunities and Challenges for PBPK Model of mAbs in Paediatrics and Pregnancy. AAPS J 2022; 24:72. [PMID: 35650328 DOI: 10.1208/s12248-022-00722-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
New drugs may in some cases need to be tested in paediatric and pregnant patients. However, it is difficult to recruit such patients and there are many ethical issues around their inclusion in clinical trials. Modelling and simulation can help to plan well-designed clinical trials with a reduced number of participants and to bridge gaps where recruitment is difficult. Physiologically based pharmacokinetic (PBPK) models for small molecule drugs have been used to aid study design and dose adjustments in paediatrics and pregnancy, with several publications in the literature. However, published PBPK models for monoclonal antibodies (mAb) in these populations are scarce. Here, the current status of mAb PBPK models in paediatrics and pregnancy is discussed. Seven mAb PBPK models published for paediatrics were found, which report good prediction accuracy across a wide age range. No mAb PBPK models for pregnant women have been published to date. Current challenges to the development of such PBPK models are discussed, including gaps in our knowledge of relevant physiological processes and availability of clinical data to verify models. As the availability of such data increases, it will help to improve our confidence in the PBPK model predictive ability. Advantages for using PBPK models to predict mAb PK in paediatrics and pregnancy are discussed. For example, the ability to incorporate ontogeny and gestational changes in physiology, prediction of maternal, placental and foetal exposure and the ability to make predictions from in vitro and preclinical data prior to clinical data being available.
Collapse
Affiliation(s)
- Katherine L Gill
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | - Hannah M Jones
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
7
|
Liu S, Shah DK. Mathematical Models to Characterize the Absorption, Distribution, Metabolism, and Excretion of Protein Therapeutics. Drug Metab Dispos 2022; 50:867-878. [PMID: 35197311 PMCID: PMC11022906 DOI: 10.1124/dmd.121.000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic proteins (TPs) have ranked among the most important and fastest-growing classes of drugs in the clinic, yet the development of successful TPs is often limited by unsatisfactory efficacy. Understanding pharmacokinetic (PK) characteristics of TPs is key to achieving sufficient and prolonged exposure at the site of action, which is a prerequisite for eliciting desired pharmacological effects. PK modeling represents a powerful tool to investigate factors governing in vivo disposition of TPs. In this mini-review, we discuss many state-of-the-art models that recapitulate critical processes in each of the absorption, distribution, metabolism/catabolism, and excretion pathways of TPs, which can be integrated into the physiologically-based pharmacokinetic framework. Additionally, we provide our perspectives on current opportunities and challenges for evolving the PK models to accelerate the discovery and development of safe and efficacious TPs. SIGNIFICANCE STATEMENT: This minireview provides an overview of mechanistic pharmacokinetic (PK) models developed to characterize absorption, distribution, metabolism, and elimination (ADME) properties of therapeutic proteins (TPs), which can support model-informed discovery and development of TPs. As the next-generation of TPs with diverse physicochemical properties and mechanism-of-action are being developed rapidly, there is an urgent need to better understand the determinants for the ADME of TPs and evolve existing platform PK models to facilitate successful bench-to-bedside translation of these promising drug molecules.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|