1
|
Jin S, Paludetto MN, Kurkela M, Kahma H, Neuvonen M, Xiang X, Cai W, Backman JT. In vitro assessment of inhibitory effects of kinase inhibitors on CYP2C9, 3A and 1A2: Prediction of drug-drug interaction risk with warfarin and direct oral anticoagulants. Eur J Pharm Sci 2024; 203:106884. [PMID: 39218046 DOI: 10.1016/j.ejps.2024.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to evaluate the cytochrome P450 (CYP)-mediated drug-drug interaction (DDI) potential of kinase inhibitors with warfarin and direct oral anticoagulants (DOACs). METHODS An in vitro CYP probe substrate cocktail assay was used to study the inhibitory effects of fifteen kinase inhibitors on CYP2C9, 3A, and 1A2. Then, DDI predictions were performed using both mechanistic static and physiologically-based pharmacokinetic (PBPK) models. RESULTS Linsitinib, masitinib, regorafenib, tozasertib, trametinib, and vatalanib were identified as competitive CYP2C9 inhibitors (Ki = 1.4, 1.0, 1.1, 3.8, 0.5, and 0.1 μM, respectively). Masitinib and vatalanib were competitive CYP3A inhibitors (Ki = 1.3 and 0.2 μM), and vatalanib noncompetitively inhibited CYP1A2 (Ki = 2.0 μM). Moreover, linsitinib and tozasertib were CYP3A time-dependent inhibitors (KI = 26.5 and 400.3 μM, kinact = 0.060 and 0.026 min-1, respectively). Only linsitinib showed time-dependent inhibition of CYP1A2 (KI = 13.9 μM, kinact = 0.018 min-1). Mechanistic static models identified possible DDI risks for linsitinib and vatalanib with (S)-/(R)-warfarin, and for masitinib with (S)-warfarin. PBPK simulations further confirmed that vatalanib may increase (S)- and (R)-warfarin exposure by 4.37- and 1.80-fold, respectively, and that linsitinib may increase (R)-warfarin exposure by 3.10-fold. Mechanistic static models predicted a smaller risk of DDIs between kinase inhibitors and apixaban or rivaroxaban. The greatest AUC increases (1.50-1.74) were predicted for erlotinib in combination with apixaban and rivaroxaban. Linsitinib, masitinib, and vatalanib were predicted to have a smaller effect on apixaban and rivaroxaban AUCs (AUCR 1.22-1.53). No kinase inhibitor was predicted to increase edoxaban exposure. CONCLUSIONS Our results suggest that several kinase inhibitors, including vatalanib and linsitinib, can cause CYP-mediated drug-drug interactions with warfarin and, to a lesser extent, with apixaban and rivaroxaban. The work provides mechanistic insights into the risk of DDIs between kinase inhibitors and anticoagulants, which can be used to avoid preventable DDIs in the clinic.
Collapse
Affiliation(s)
- Shasha Jin
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Mika Kurkela
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Helinä Kahma
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Janne T Backman
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland.
| |
Collapse
|
2
|
Shiekmydeen J, Tanisha, Sharma S, Chakraborty K, Kannaiyan DC, Khan NA, Malayandi R. Optimization of wet granulation process for manufacturing Rivaroxban generic immediate-release tablets using PBPK modeling and simulations. In Silico Pharmacol 2024; 12:77. [PMID: 39184229 PMCID: PMC11341787 DOI: 10.1007/s40203-024-00249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Granulation is the critical process for the pharmaceutical development of poorly water-soluble drug products. Poorly formulated products have challenges in dissolution and bioequivalence studies. Rivaroxaban (RXB) is a poorly soluble drug and has 66% fasting bioavailability at a high strength of 20 mg. Establishing the bioequivalence between test and reference products for high strength requires comparative dissolution profiles and bioequivalence. Improper granulation products and the rest of the batches failed in virtual bioequivalence. The present study provided insight into the optimization of the wet granulation process for manufacturing RXB generic immediate-release tablets using PBPK modeling and simulations. Furthermore, PBPK models are not only useful for formulation optimization but also for process optimization during pharmaceutical product development. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00249-6.
Collapse
Affiliation(s)
- Jailani Shiekmydeen
- Department of Pharmacy, Faculty of Engineering and Technology (FEAT), Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu India
- R&D, Alpha Pharma (Formerly Julphar Saudi Arabia), King Abdullah Economic City, Rabigh, Kingdom of Saudi Arabia
| | - Tanisha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hajipur, Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur Bihar, 844102 India
| | - Sonam Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hajipur, Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur Bihar, 844102 India
| | - Kishor Chakraborty
- R&D, Alpha Pharma (Formerly Julphar Saudi Arabia), King Abdullah Economic City, Rabigh, Kingdom of Saudi Arabia
| | - Dhanapal Chidambaram Kannaiyan
- Department of Pharmacy, Faculty of Engineering and Technology (FEAT), Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu India
| | - Noohu Abdulla Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Rajkumar Malayandi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hajipur, Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur Bihar, 844102 India
| |
Collapse
|
3
|
Lenard A, Hermann SA, Stoll F, Burhenne J, Foerster KI, Mikus G, Meid AD, Haefeli WE, Blank A. Effect of Clarithromycin, a Strong CYP3A and P-glycoprotein Inhibitor, on the Pharmacokinetics of Edoxaban in Healthy Volunteers and the Evaluation of the Drug Interaction with Other Oral Factor Xa Inhibitors by a Microdose Cocktail Approach. Cardiovasc Drugs Ther 2024; 38:747-756. [PMID: 36870039 PMCID: PMC11266212 DOI: 10.1007/s10557-023-07443-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE We assessed the differential effect of clarithromycin, a strong inhibitor of cytochrome P450 (CYP) 3A4 and P-glycoprotein, on the pharmacokinetics of a regular dose of edoxaban and on a microdose cocktail of factor Xa inhibitors (FXaI). Concurrently, CYP3A activity was determined with a midazolam microdose. METHODS In an open-label fixed-sequence trial in 12 healthy volunteers, the pharmacokinetics of a microdosed FXaI cocktail (μ-FXaI; 25 μg apixaban, 50 μg edoxaban, and 25 μg rivaroxaban) and of 60 mg edoxaban before and during clarithromycin (2 x 500 mg/d) dosed to steady-state was evaluated. Plasma concentrations of study drugs were quantified using validated ultra-performance liquid chromatography-tandem mass spectrometry methods. RESULTS Therapeutic clarithromycin doses increased the exposure of a therapeutic 60 mg dose of edoxaban with a geometric mean ratio (GMR) of the area under the plasma concentration-time curve (AUC) of 1.53 (90 % CI: 1.37-1.70; p < 0.0001). Clarithromycin also increased the GMR (90% CI) of the exposure of microdosed FXaI apixaban to 1.38 (1.26-1.51), edoxaban to 2.03 (1.84-2.24), and rivaroxaban to 1.44 (1.27-1.63). AUC changes observed for the therapeutic edoxaban dose were significantly smaller than those observed with the microdose (p < 0.001). CONCLUSION Clarithromycin increases FXaI exposure. However, the magnitude of this drug interaction is not expected to be clinically relevant. The edoxaban microdose overestimates the extent of the drug interaction with the therapeutic dose, whereas AUC ratios for apixaban and rivaroxaban were comparable to the interaction with therapeutic doses as reported in the literature. TRIAL REGISTRATION EudraCT Number: 2018-002490-22.
Collapse
Affiliation(s)
- Alexander Lenard
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Simon A Hermann
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Felicitas Stoll
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Juergen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Partner Site Heidelberg, German Center for Infection Research, Heidelberg, Germany.
| |
Collapse
|
4
|
Wiley AM, Yang J, Madhani R, Nath A, Totah RA. Investigating the association between CYP2J2 inhibitors and QT prolongation: a literature review. Drug Metab Rev 2024; 56:145-163. [PMID: 38478383 DOI: 10.1080/03602532.2024.2329928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.
Collapse
Affiliation(s)
- Alexandra M Wiley
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Jade Yang
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rivcka Madhani
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| |
Collapse
|
5
|
Casson CL, John SA, Ferrall-Fairbanks MC. Mathematical modeling of cardio-oncology: Modeling the systemic effects of cancer therapeutics on the cardiovascular system. Semin Cancer Biol 2023; 97:30-41. [PMID: 37979714 DOI: 10.1016/j.semcancer.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.
Collapse
Affiliation(s)
- Camara L Casson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sofia A John
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | - Meghan C Ferrall-Fairbanks
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
6
|
Wang X, Chen F, Guo N, Gu Z, Lin H, Xiang X, Shi Y, Han B. Application of physiologically based pharmacokinetics modeling in the research of small-molecule targeted anti-cancer drugs. Cancer Chemother Pharmacol 2023; 92:253-270. [PMID: 37466731 DOI: 10.1007/s00280-023-04566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Physiologically based pharmacokinetics (PBPK) models are increasingly used in the drug research and development, especially in anti-cancer drugs. Between 2001 and 2020, a total of 89 small-molecule targeted antitumor drugs were approved in China and the United States, some of which already included PBPK modeling in their application or approval packages. This article intended to review the prevalence and application of PBPK model in these drugs. METHOD Article search was performed in the PubMed to collect English research articles on small-molecule targeted anti-cancer drugs using PBPK modeling. The selected articles were classified into nine categorizes according to the application areas and further analyzed. RESULT From 2001 to 2020, more than 60% of small-molecule targeted anti-cancer drugs (54/89) were studied using PBPK model with a wide range of application. Ninety research articles were included, of which 48 involved enzyme-mediated drug-drug interaction (DDI). Of these retrieved articles, Simcyp, GastroPlus, and PK-Sim were the most widely model building platforms, which account for 63.8%, 15.2%, and 8.6%, respectively. CONCLUSION PBPK modeling is commonly and widely used to research small-molecule targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Fang Chen
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
| | - Zhichun Gu
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Houwen Lin
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China.
| |
Collapse
|
7
|
Leow JWH, Ang XJ, Chan ECY. Development and verification of a physiologically based pharmacokinetic model of dronedarone and its active metabolite N-desbutyldronedarone: Application to prospective simulation of complex drug-drug interaction with rivaroxaban. Br J Clin Pharmacol 2023; 89:1873-1890. [PMID: 36683488 DOI: 10.1111/bcp.15670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/14/2022] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
AIMS Despite potential enzyme- and transporter-mediated drug-drug interactions (DDIs) between dronedarone and rivaroxaban in atrial fibrillation (AF) patients, pharmacokinetic/pharmacodynamic data remain limited to guide clinical practice. We aimed to develop, verify and validate a physiologically based pharmacokinetic (PBPK) model of dronedarone and its major metabolite, N-desbutyldronedarone (NDBD), to prospectively interrogate this clinically relevant DDI in healthy and mild renal impairment populations. METHODS The middle-out development of our PBPK model combined literature-derived or in-house in vitro data, predicted in silico data and in vivo clinical data. Model verification was performed for intravenous and oral (single and multiple) dosing regimens. Model validation for the accurate prediction of cytochrome P450 (CYP)3A4- and P-glycoprotein-mediated DDI utilized simvastatin and digoxin as respective victim drugs. Rivaroxaban-specific inhibitory parameters of dronedarone and/or NDBD against CYP3A4, CYP2J2, OAT3 and P-glycoprotein were incorporated into the PBPK-DDI model for prospective dronedarone-rivaroxaban DDI simulation. RESULTS Dronedarone and NDBD PK following clinically relevant doses of 400 mg dronedarone across single and multiple oral dosing were accurately simulated by incorporating effect of auto-inactivation on dose nonlinearities. Following successful model validation, nondose-adjusted rivaroxaban-dronedarone DDI in healthy and mild renal impairment populations revealed simulated rivaroxaban area under the plasma concentration-time curve up to 24 h fold change greater than dose exposure equivalence (0.70-1.43) at 1.65 and 1.84, respectively. Correspondingly, respective major bleeding risk was 4.24 and 4.70% compared with threshold of 4.5% representing contraindicated rivaroxaban-ketoconazole DDI. CONCLUSION Our PBPK-DDI model predicted clinically significant dronedarone-rivaroxaban DDI in both healthy and mild renal impairment subjects. Greater benefit vs. risk could be achieved with rivaroxaban dose reductions to at least 15 mg in mild renal impairment subjects on concomitant dronedarone and rivaroxaban.
Collapse
Affiliation(s)
| | - Xiao Jun Ang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
8
|
Tang LWT, Wu G, Chan ECY. Identification of Infigratinib as a Potent Reversible Inhibitor and Mechanism-Based Inactivator of CYP2J2: Nascent Evidence for a Potential In Vivo Metabolic Drug-Drug Interaction with Rivaroxaban. J Pharmacol Exp Ther 2022; 382:123-134. [PMID: 35640957 PMCID: PMC9639665 DOI: 10.1124/jpet.122.001222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a fibroblast growth factor receptor inhibitor that was recently FDA-approved for the treatment of advanced or metastatic cholangiocarcinoma. We previously established that INF inhibited and inactivated cytochrome P450 3A4 (CYP3A4). Here, in a follow-up to our previous study, we identified for the first time that INF also elicited potent competitive inhibition and mechanism-based inactivation (MBI) of CYP2J2 with kinetic parameters K i, K I, k inact, and partition ratio of 1.94 µM, 0.10 µM, 0.026 min-1 and ~3 respectively when rivaroxaban was harnessed as the probe substrate. Inactivation was revealed to exhibit cofactor-dependency and was attenuated by an alternative substrate (astemizole) and direct inhibitor (nilotinib) of CYP2J2. Additionally, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from covalent modification due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation as well as the lack of a resolvable Soret band in spectral scans. Glutathione trapping confirmed that the identity of the putative reactive intermediate implicated in the covalent inactivation of both CYP2J2 and CYP3A4 was identical and likely attributable to an electrophilic p-benzoquinonediimine intermediate of INF. Finally, mechanistic static modelling revealed that by integrating the previously arcane inhibition and inactivation kinetic parameters of CYP2J2-mediated rivaroxaban hydroxylation by INF illuminated in this work together with those previously documented for CYP3A4, a 49% increase in the systemic exposure of rivaroxaban was projected. Our modelling results predicted a potential risk of metabolic DDI between the clinically-relevant combination of rivaroxaban and INF in the setting of cancer. Significance Statement In this study, we reported that INF elicits potent reversible inhibition and MBI of CYP2J2. Furthermore, static modelling predicted that its coadministration with the direct oral anticoagulant rivaroxaban may potentially culminate in an metabolic DDI leading to an increased risk of major bleeding. As rivaroxaban is steadily gaining prominence as the anticoagulant of choice in the treatment of cancer-associated venous thromboembolism, the DDI projections reported here are clinically-relevant and warrants further investigation via physiologically-based pharmacokinetic modelling and simulation.
Collapse
Affiliation(s)
| | - Guoyi Wu
- National University of Singapore, Singapore
| | | |
Collapse
|