1
|
A Novel Combination of Sotorasib and Metformin Enhances Cytotoxicity and Apoptosis in KRAS-Mutated Non-Small Cell Lung Cancer Cell Lines through MAPK and P70S6K Inhibition. Int J Mol Sci 2023; 24:ijms24054331. [PMID: 36901764 PMCID: PMC10001819 DOI: 10.3390/ijms24054331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Novel inhibitors of KRAS with G12C mutation (sotorasib) have demonstrated short-lasting responses due to resistance mediated by the AKT-mTOR-P70S6K pathway. In this context, metformin is a promising candidate to break this resistance by inhibiting mTOR and P70S6K. Therefore, this project aimed to explore the effects of the combination of sotorasib and metformin on cytotoxicity, apoptosis, and the activity of the MAPK and mTOR pathways. We created dose-effect curves to determine the IC50 concentration of sotorasib, and IC10 of metformin in three lung cancer cell lines; A549 (KRAS G12S), H522 (wild-type KRAS), and H23 (KRAS G12C). Cellular cytotoxicity was evaluated by an MTT assay, apoptosis induction through flow cytometry, and MAPK and mTOR pathways were assessed by Western blot. Our results showed a sensitizing effect of metformin on sotorasib effect in cells with KRAS mutations and a slight sensitizing effect in cells without K-RAS mutations. Furthermore, we observed a synergic effect on cytotoxicity and apoptosis induction, as well as a notable inhibition of the MAPK and AKT-mTOR pathways after treatment with the combination, predominantly in KRAS-mutated cells (H23 and A549). The combination of metformin with sotorasib synergistically enhanced cytotoxicity and apoptosis induction in lung cancer cells, regardless of KRAS mutational status.
Collapse
|
2
|
Mohammadhosseinpour S, Weaver A, Sudhakaran M, Ho LC, Le T, Doseff AI, Medina-Bolivar F. Arachidin-1, a Prenylated Stilbenoid from Peanut, Enhances the Anticancer Effects of Paclitaxel in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2023; 15:399. [PMID: 36672351 PMCID: PMC9856928 DOI: 10.3390/cancers15020399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. To this end, the cytotoxic effects of the prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3), and non-prenylated resveratrol (RES) were evaluated in human TNBC cell lines as potential adjuvants for paclitaxel (Pac). A-1, alone or in combination with Pac, showed the highest cytotoxicity in TNBC cells. Apoptosis was further evaluated by measuring key apoptosis marker proteins, cell cycle arrest, and intracellular reactive oxygen species (ROS) generation. Furthermore, the cytotoxic effect of A-1 combined with Pac was also evaluated in a 3D spheroid TNBC model. The results showed that A-1 decreased the Pac IC50 approximately 2-fold in TNBC cells. The synergistic combination of A-1 and Pac arrested cells in G2/M phase and activated p53 expression. In addition, the combined treatment increased intracellular ROS generation and induced apoptosis. Importantly, the combination of A-1 with Pac inhibited TNBC spheroid growth. Our results demonstrated that A-1 in combination with Pac inhibited cell proliferation, induced apoptosis through mitochondrial oxidative stress, and reduced TNBC spheroid growth. These findings underscore the impactful effects of the prenylated stilbenoid A-1 as a novel adjuvant for Pac chemotherapy in TNBC treatment.
Collapse
Affiliation(s)
| | - Alexx Weaver
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
| | - Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Linh-Chi Ho
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
| | - Tra Le
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
| | - Andrea I. Doseff
- Department of Physiology, and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Fabricio Medina-Bolivar
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
3
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
4
|
Farahi A, Abedini MR, Javdani H, Arzi L, Chamani E, Farhoudi R, Talebloo N, Hoshyar R. Crocin and Metformin suppress metastatic breast cancer progression via VEGF and MMP9 downregulations: in vitro and in vivo studies. Mol Cell Biochem 2021; 476:3341-3351. [PMID: 33929675 DOI: 10.1007/s11010-020-04043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022]
Abstract
Metastatic breast cancer remains a serious health concern and numerous investigations recommended medicinal plants as a complementary therapy. Crocin is one of the known anticancer bio-component. Recently, the inhibitory effect of metformin has been studied on the various aspects of cancer. However, no study reported their combination effects on metastatic breast cancer. In the present study, we have assessed their anti-metastatic effects on in vitro and in vivo breast cancer models. Using MTT assay, scratch, and adhesion tests, we have evaluated the cytotoxic, anti-invasive and anti-adhesion effects of crocin and metformin on 4T1 cell line, respectively. Their protective effects and MMP9 as well as VEGF protein expression levels (Western blotting) investigated in the 4T1 murine breast cancer model. Our results showed that both crocin and metformin reduced cell viability, delayed scratch healing and inhibited the cell adhesion, in vitro. While crocin alone restored the mice's weight reduction, crocin, metformin, and their combination significantly reduced the tumor volume size and enhanced animal survival rate in murine breast cancer model, responses that were associated with VEGF and MMP9 down-regulation. These findings suggest that a combination of crocin and metformin could serve as a novel therapeutic approach to enhance the effectiveness of metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Ali Farahi
- Student Research Committee and Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran
| | - Mohammad Reza Abedini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran. .,Department of Cellular and Molecular Medicine, University of Ottawa School of Medicine, Ottawa, ON, Canada.
| | - Hossein Javdani
- Student Research Committee and Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran
| | - Laleh Arzi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elham Chamani
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran
| | - Ramin Farhoudi
- Department of Viral Vaccine Production, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran
| | - Nazanin Talebloo
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, P.O. Box 9717853577, Birjand, Iran. .,Microbiology and Molecular Genetics Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Ko E, Baek S, Kim J, Park D, Lee Y. Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells. Dev Reprod 2020; 24:113-123. [PMID: 32734128 PMCID: PMC7375979 DOI: 10.12717/dr.2020.24.2.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 01/28/2023]
Abstract
Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/ RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.
Collapse
Affiliation(s)
- Eunjeong Ko
- Dept. of Medicine, Jeju National
University School of Medicine, Jeju 63243,
Korea
| | - Seungjae Baek
- Dept. of Medicine, Jeju National
University School of Medicine, Jeju 63243,
Korea
| | - Jiwon Kim
- Histology, Jeju National University
School of Medicine, Jeju 63243,
Korea
| | - Deokbae Park
- Histology, Jeju National University
School of Medicine, Jeju 63243,
Korea
| | - Youngki Lee
- Histology, Jeju National University
School of Medicine, Jeju 63243,
Korea
| |
Collapse
|
6
|
Salvatore T, Pafundi PC, Morgillo F, Di Liello R, Galiero R, Nevola R, Marfella R, Monaco L, Rinaldi L, Adinolfi LE, Sasso FC. Metformin: An old drug against old age and associated morbidities. Diabetes Res Clin Pract 2020; 160:108025. [PMID: 31954752 DOI: 10.1016/j.diabres.2020.108025] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
Metformin represents a striking example of a "historical nemesis" of a drug. About 40 years after its marketing in Europe, once demonstrated its efficacy and safety, metformin was registered also in the U.S. A few years later, it has become a mainstay in T2DM treatment, according to all international Scientific Societies guidelines. Today, despite the advent of new innovative drugs, metformin still persists as a first-choice drug in T2DM. This success is largely justified. In fact, over the years, also positive effects on health increased. In particular, evidence has been accumulated on a beneficial impact against many other aging-related morbidities (obesity, metabolic syndrome, cardiovascular disease, cancer, cognitive decline and mortality). This literature review describes preclinical and clinical evidence favoring the "anti-aging" therapeutic potential of metformin outside of T2DM. The rationale to the use of metformin as part of a combined therapy in a variety of clinical settings, allowing for a reduction of the chemotherapy dose in cancer patients, has also been discussed. In particular, the focus was on metformin action on RAS/RAF/MAPK pathway. In the end, the real challenge for metformin could be to fully demonstrate beneficial effects on health even in non-diabetic subjects.
Collapse
Affiliation(s)
- Teresa Salvatore
- Unit of Internal Medicine, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Pia Clara Pafundi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Floriana Morgillo
- Division of Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Raimondo Di Liello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Raffaele Galiero
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Riccardo Nevola
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Raffaele Marfella
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Lucio Monaco
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luca Rinaldi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luigi Elio Adinolfi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Ferdinando Carlo Sasso
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
7
|
Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci Rep 2019; 9:1282. [PMID: 30718758 PMCID: PMC6361966 DOI: 10.1038/s41598-018-38004-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is an extensively used chemotherapeutic drug for lung cancer, but the development of resistance decreases its effectiveness in the treatments of non-small cell lung cancer (NSCLC). In this study, we examined the effects of metformin, a widely used antidiabetic drug, on cisplatin radiosensitization in NSCLC cell lines. Human NSCLC cell lines, A549 (cisplatin-resistant) and H460 (cisplatin-sensitive), were treated with metformin, cisplatin or a combination of both drugs before ionizing radiation. Cell proliferation, clonogenic assays, western blotting, cisplatin-DNA adduct formation and immunocytochemistry were used to characterize the treatments effects. Metformin increased the radiosensitivity of NSCLC cells. Metformin showed additive and over-additive effects in combination with cisplatin and the radiation response in the clonogenic assay in H460 and A549 cell lines (p = 0.018 for the interaction effect between cisplatin and metformin), respectively. At the molecular level, metformin led to a significant increase in cisplatin-DNA adduct formation compared with cisplatin alone (p < 0.01, ANOVA-F test). This was accompanied by a decreased expression of the excision repair cross-complementation 1 expression (ERCC1), a key enzyme in nucleotide excision repair pathway. Furthermore, compared with each treatment alone metformin in combination with cisplatin yielded the lowest level of radiation-induced Rad51 foci, an essential protein of homologous recombination repair. Ionizing radiation-induced γ-H2AX and 53BP1 foci persisted longer in both cell lines in the presence of metformin. Pharmacological inhibition of AMP-activated protein kinase (AMPK) demonstrated that metformin enhances the radiosensitizing effect of cisplatin through an AMPK-dependent pathway only in H460 but not in A549 cells. Our results suggest that metformin can enhance the effect of combined cisplatin and radiotherapy in NSCLC and can sensitize these cells to radiation that are not sensitized by cisplatin alone.
Collapse
|
8
|
Dogan Turacli I, Candar T, Yuksel BE, Demirtas S. Role of metformin on base excision repair pathway in p53 wild-type H2009 and HepG2 cancer cells. Hum Exp Toxicol 2017; 37:909-919. [DOI: 10.1177/0960327117737145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The antidiabetic agent metformin was shown to further possess chemopreventive and chemotherapeutic effects against cancer. Despite the advances, the underlying molecular mechanisms involved in decreasing tumor formation are still unclear. The understanding of the participation of oxidative stress in the action mechanism of metformin and its related effects on p53 and on DNA base excision repair (BER) system can help us to get closer to solve metformin puzzle in cancer. We investigated the effects of metformin in HepG2 and H2009 cells, verifying cytotoxicity, oxidative stress, antioxidant status, and DNA BER system. Our results showed metformin induced oxidative stress and reduced antioxidant capacity. Also, metformin treatment with hydrogen peroxide (H2O2) enhanced these effects. Although DNA BER enzyme activities were not changed accordantly together by metformin as a single agent or in combination with H2O2, activated p53 was decreased with increased oxidative stress in H2009 cells. Our study on the relationship between metformin/reactive oxygen species and DNA BER system in cancer cells would be helpful to understand the anticancer effects of metformin through cellular signal transduction pathways. These findings can be a model of the changes on oxidative stress that reflects p53’s regulatory role on DNA repair systems in cancer for the future studies.
Collapse
Affiliation(s)
- Irem Dogan Turacli
- Department of Medical Biology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Tuba Candar
- Department of Medical Biochemistry, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Berrin Emine Yuksel
- Department of Medical Genetics, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Selda Demirtas
- Department of Medical Biochemistry, Faculty of Medicine, Ufuk University, Ankara, Turkey
| |
Collapse
|
9
|
Yousef M, Tsiani E. Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies. Cancers (Basel) 2017; 9:cancers9050045. [PMID: 28481268 PMCID: PMC5447955 DOI: 10.3390/cancers9050045] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival and these mutations allow them to develop resistance to many chemotherapeutic agents, highlighting the need for development of new potent anti-cancer agents. Metformin has long been used as a treatment for type 2 diabetes and has recently attracted attention as a potential agent to be used in the treatment of cancer. The present review summarizes the existing in vitro and in vivo animal studies focusing on the anti-lung cancer effects of metformin and its effects on key proliferative and anti-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
10
|
Stashkevich MA, Khomutov EV, Dumanskii YV, Matvienko AG, Zinkovich II. Effect of 5-Fluorouracil on Thymidine Phosphorylase Activity in Model Experiment. Bull Exp Biol Med 2016; 160:646-8. [PMID: 27021101 DOI: 10.1007/s10517-016-3239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Variations in thymidine phosphorylase activity in rat liver were studied in 1, 3, 6, 12, and 24 h after intraperitoneal bolus injection of 5-fluorouracil. Enzyme activity was measured by HPLC. A 2-fold decrease in enzyme activity was observed 3 h after 5-fluorouracil administration and persisted for 12 h. This additional effect of the cytostatic should be taken into account in choosing chemotherapy protocol.
Collapse
Affiliation(s)
- M A Stashkevich
- Central Research Laboratory, M. Gorky Donetsk National Medical University, Donetsk, Ukraine
| | - E V Khomutov
- Central Research Laboratory, M. Gorky Donetsk National Medical University, Donetsk, Ukraine
| | - Yu V Dumanskii
- Central Research Laboratory, M. Gorky Donetsk National Medical University, Donetsk, Ukraine
| | - A G Matvienko
- Central Research Laboratory, M. Gorky Donetsk National Medical University, Donetsk, Ukraine.
| | - I I Zinkovich
- Central Research Laboratory, M. Gorky Donetsk National Medical University, Donetsk, Ukraine
| |
Collapse
|
11
|
Elamin YY, Rafee S, Osman N, O Byrne KJ, Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? CANCER MICROENVIRONMENT 2015; 9:33-43. [PMID: 26298314 DOI: 10.1007/s12307-015-0173-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
Thymidine phosphorylase (TP) is a nucleoside metabolism enzyme that plays an important role in the pyrimidine pathway.TP catalyzes the conversion of thymidine to thymine and 2-deoxy-α-D-ribose-1-phosphate (dRib-1-P). Although this reaction is reversible, the main metabolic function of TP is catabolic. TP is identical to the angiogenic factor platelet-derived endothelial-cell growth factor (PD-ECGF). TP is overexpressed in several human cancers in response to cellular stressful conditions like hypoxia, acidosis, chemotherapy and radiotherapy. TP has been shown to promote tumor angiogenesis, invasion, metastasis, evasion of the immune-response and resistance to apoptosis. Some of the biological effects of TP are dependent on its enzymatic activity, while others are mediated through cytokines like interleukin 10 (IL-10), basic fibroblast growth factor (bFGF) and tumour necrosis factor α (TNFα). Interestingly, TP also plays a role in cancer treatment through its role in the conversion of the oral fluoropyrimidine capecitabine into its active form 5-FU. TP is a predictive marker for fluoropyrimidine response. Given its various biological functions in cancer progression, TP is a promising target in cancer treatment. Further translational research is required in this area.
Collapse
Affiliation(s)
- Yasir Y Elamin
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland.
| | - Shereen Rafee
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Nemer Osman
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Kenneth J O Byrne
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, St James's Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Tsai MJ, Yang CJ, Kung YT, Sheu CC, Shen YT, Chang PY, Huang MS, Chiu HC. Metformin decreases lung cancer risk in diabetic patients in a dose-dependent manner. Lung Cancer 2014; 86:137-43. [PMID: 25267165 DOI: 10.1016/j.lungcan.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Higher risk of lung cancer has been noted in patients with type 2 diabetes mellitus (DM). Some observational studies have shown a reduced risk of lung cancer in DM patients taking metformin, but a dose-response relationship has never been reported. The aim of this study is to exam the association between the dose of metformin and the incidence of lung cancer in a Chinese population. MATERIALS AND METHODS The dataset used for this nationwide population-based study is a cohort of 1 million subjects randomly sampled from individuals enrolled in the Taiwan National Health Insurance system. We enrolled all subjects with newly diagnosed type 2 DM between 1997 and 2007. Subjects with a diagnosis of neoplasm before DM diagnosis, those using metformin before DM diagnosis, those with polycystic ovary syndrome, and those with a DM diagnosis before their 15 years of age were excluded. The demographic data and duration, cumulative dose and intensity of metformin use were compared between patients developing lung cancer and those without lung cancer. RESULTS Totally, 47,356 subjects were identified. After adjusting for age, gender, and modified Charlson Comorbidity Index score, the utilization of metformin was an independent protecting factor, and the risk of developing lung cancer decreased progressively with either the higher cumulative dose or the higher intensity of metformin use. CONCLUSIONS This study revealed that the use of metformin decreased the risk of lung cancer in a dose-dependent manner in patients with type 2 DM. The chemo-preventive effect of metformin deserves further study.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Kung
- Administration Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Healthcare Administration and Medical Informatics, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ting Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pi-Yu Chang
- Administration Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Herng-Chia Chiu
- Department of Healthcare Administration and Medical Informatics, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Sørensen JB, Jakobsen JN, Zimling Z, Wallerek S, Vilmar A. Customizing chemotherapy in thoracic malignancies based on ERCC1 expression. Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Platinum-based chemotherapy regimens using cisplatin or carboplatin are the cornerstones of treatment for advanced non-small-cell lung cancer (NSCLC), small-cell lung cancer and malignant pleural mesothelioma. Despite being standard regimens of choice in the majority of patients without oncogene driver mutations, the activity obtained by individual patients varies considerably. Hence, biomarkers such as ERCC1 are needed to predict sensitivity to drugs, which has been explored as a predictor for platinum sensitivity in thoracic malignancies, mostly in the case of NSCLC. ERCC1 may be measured by mRNA activity; however, most studies have examined protein expression via immunohistochemistry. High ERCC1 expression has been a good prognostic factor in resected NSCLC patients who are not receiving chemotherapy, while it has been an adverse predictor for the effect of cisplatin or carboplatin. The latter has also been shown in malignant pleural mesothelioma. Heterogeneous distribution of ERCC1 within tumors may be a source of discordance in the results obtained in various studies. Adding to the discordance may be the fact that there are four isoforms of ERCC1 and seemingly only one of these accounts for cisplatin sensitivity. It is possible that the antibodies used may be equally specific for the same isoforms, which contributes to the heterogeneity of results, in addition to the contribution from immunohistochemistry cutoff levels. Robust evidence in support of the use of ERCC1 to select treatment on an individual patient basis is lacking, and such results from ongoing trials are eagerly awaited in order to improve the possibilities for individualized chemotherapy with improved outcomes.
Collapse
Affiliation(s)
- Jens Benn Sørensen
- Department Oncology, Finsen Centre, National University Hospital, Copenhagen, Denmark.
| | - Jan Nyrop Jakobsen
- Department Oncology, Finsen Centre, National University Hospital, Copenhagen, Denmark
| | - Zarah Zimling
- Department Oncology, Finsen Centre, National University Hospital, Copenhagen, Denmark
| | - Sandra Wallerek
- Department Oncology, Finsen Centre, National University Hospital, Copenhagen, Denmark
| | - Adam Vilmar
- Department Hematology, Herlev University Hospital, Herlev, Denmark
| |
Collapse
|