1
|
Xiao S, Yin H, Lv X, Wang Z, Jiang L, Xia Y, Liu Y. Efficacy and safety of androgen receptor inhibitors for treatment of advanced prostate cancer: A systematic review and network meta-analysis. Br J Clin Pharmacol 2024; 90:2067-2078. [PMID: 38992964 DOI: 10.1111/bcp.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
AIMS Androgen receptor inhibitors (ARIs) have become an effective treatment for advanced prostate cancer (PC). However, it is unknown which ARI is the most helpful and safe for men with advanced PC. Our aim is to help physicians make clinical decisions and provide medication guidelines for patients with advanced PC to avoid potential risks when using ARIs for treatment. METHODS We systematically searched the following databases: PubMed, Embase and Cochrane Library, with a literature publication deadline of February 2023. The primary efficacy outcomes were 18-month overall survival (OS), treatment-emergent adverse events (TEAEs), hypertension and fatigue. The network meta-analysis (NMA) was performed by Stata 15.1, and Revman 5.3 was used to assess the included studies' risk of bias. RESULTS The analysis included 26 trials with 26 263 people. The surface under the cumulative ranking curve (SUCRA) concluded that enzalutamide (86.8%) showed the best effect in prolonging the OS of patients. Flutamide led to the highest risk of TEAEs (29.9%) and AEs leading to discontinuation (12.8%). Apalutamide (13.4%) led to the highest risk of grade ≥3 TEAEs. Enzalutamide had the highest risk of hypertension (0.2%), grade ≥3 hypertension (4.5%) and fatigue (5.2%). CONCLUSIONS This NMA indicates there is no one ARI to reach both the most effective and safe therapy aims for treating advanced PC and that there is a compromise between the efficacy and safety of ARIs in the treatment of advanced PC. Physicians should weigh the risks to safety against the anticipated benefits when prescribing these drugs to patients with PC.
Collapse
Affiliation(s)
- Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Yangliu Xia
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
2
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
3
|
Chandralekha B, Rajagopal H, Muthu S, Rizwana B F. Quantum mechanical, spectroscopic and molecular docking studies of N-[4-cyano-3-(trifluoromethyl) phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Wang Y, Li Y, Liu X, Pu W, Wang X, Wang J, Xiong M, Yao Shugart Y, Jin L. Bagging Nearest-Neighbor Prediction independence Test: an efficient method for nonlinear dependence of two continuous variables. Sci Rep 2017; 7:12736. [PMID: 28986523 PMCID: PMC5630623 DOI: 10.1038/s41598-017-12783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 12/03/2022] Open
Abstract
Testing dependence/correlation of two variables is one of the fundamental tasks in statistics. In this work, we proposed an efficient method for nonlinear dependence of two continuous variables (X and Y). We addressed this research question by using BNNPT (Bagging Nearest-Neighbor Prediction independence Test, software available at https://sourceforge.net/projects/bnnpt/). In the BNNPT framework, we first used the value of X to construct a bagging neighborhood structure. We then obtained the out of bag estimator of Y based on the bagging neighborhood structure. The square error was calculated to measure how well Y is predicted by X. Finally, a permutation test was applied to determine the significance of the observed square error. To evaluate the strength of BNNPT compared to seven other methods, we performed extensive simulations to explore the relationship between various methods and compared the false positive rates and statistical power using both simulated and real datasets (Rugao longevity cohort mitochondrial DNA haplogroups and kidney cancer RNA-seq datasets). We concluded that BNNPT is an efficient computational approach to test nonlinear correlation in real world applications.
Collapse
Affiliation(s)
- Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Momiao Xiong
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Genetics Center, School of Public Health, University of Texas Houston Health Sciences Center, Houston, Texas, USA
| | - Yin Yao Shugart
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Unit on Statistical Genomics, Division of Intramural Division Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Suresh P, Srinivas NR, Mullangi R. Review of HPLC and LC-MS/MS assays for the determination of various nonsteroidal anti-androgens used in the treatment of prostate cancer. Biomed Chromatogr 2017. [DOI: 10.1002/bmc.4034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- P.S. Suresh
- Jubilant Biosys; 2nd Stage, Industrial Suburb; Yeswanthpur, Bangalore India
| | - Nuggehally R. Srinivas
- Suramus Bio; Drug Development, I Phase, J.P. Nagar; Bangalore India
- Zydus Research Centre; Cadila Healthcare Ltd; Ahmedabad India
| | - Ramesh Mullangi
- Jubilant Biosys; 2nd Stage, Industrial Suburb; Yeswanthpur, Bangalore India
| |
Collapse
|
6
|
Characterization of oxycodone in vitro metabolism by human cytochromes P450 and UDP-glucuronosyltransferases. J Pharm Biomed Anal 2016; 144:129-137. [PMID: 27692933 DOI: 10.1016/j.jpba.2016.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022]
Abstract
The hepatic metabolism of oxycodone by cytochromes P450 (CYP) and the UDP-glucuronosyltransferases (UGT), the main metabolic enzymes of phase I and phase II, respectively, was assessed in vitro. The N-demethylation by CYP3A4/5 and the O-demethylation by CYP2D6 in human liver microsomes (HLM) followed Michaelis-Menten kinetics, with intrinsic clearances of 1.46μL/min/mg and 0.35μL/min/mg, respectively. Although noroxycodone and oxymorphone mainly contribute to the elimination of oxycodone, the simulated total in vivo clearance using in vitro phase I metabolism was underestimated. For the first time, metabolism of oxycodone by UGT was deeply investigated using HLM, recombinant enzymes and selective inhibitors. Oxycodone-glucuronide was mainly produced by UGT2B7 (Km=762±153μM, Vmax=344±20 peak area/min/mg) and to a lesser extent by UGT2B4 (Km=2454±497μM, Vmax=201±19 peak area/min/mg). Finally, the kinetics of the drug-drug interactions were assessed using two CYP and UGT cocktail approaches. Incubations of HLM with phase I and phase II drug probes showed that oxycodone mainly decreased the in vitro activities of CYP2D6, CYP3A4/5, UGT1A3, UGT1A6 and UGT2B subfamily with an important impact on UGT2B7.
Collapse
|
7
|
Lu D, Liu H, Ye W, Wang Y, Wu B. Structure- and isoform-specific glucuronidation of six curcumin analogs. Xenobiotica 2016; 47:304-313. [PMID: 27324181 DOI: 10.1080/00498254.2016.1193264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. In the present study, we aimed to characterize the glucuronidation of six curcumin analogs (i.e. RAO-3, RAO-8, RAO-9, RAO-18, RAO-19, and RAO-23) derived from galangal using human liver microsomes (HLM) and twelve expressed UGT enzymes. 2. Formation of glucuronide was confirmed using high-resolution mass spectrometry. Single glucuronide metabolite was generated from each of six curcumin analogs. The fragmentation patterns were analyzed and were found to differ significantly between alcoholic and phenolic glucuronides. 3. All six curcumin analogs except one (RAO-23) underwent significant glucuronidation in HLM and expressed UGT enzymes. In general, the methoxy group (close to the phenolic hydroxyl group) enhanced the glucuronidation liability of the curcumin analogs. 4. UGT1A9 and UGT2B7 were primarily responsible for the glucuronidation of two alcoholic analogs (RAO-3 and RAO-18). By contrast, UGT1A9 and four UGT2Bs (UGT2B4, 2B7, 2B15 and 2B17) played important roles in conjugating three phenolic analogs (RAO-8, RAO-9, and RAO-19). Interestingly, the conjugated double bonds system (in the aliphatic chain) was crucial to the substrate selectivity of gastrointestinal UGTs (i.e. UGT1A7, 1A8 and 1A10). 5. In conclusion, glucuronidation of six curcumin analogs from galangal were structure- and isoform-specific. The knowledge should be useful in identifying a curcumin analog with improved metabolic property.
Collapse
Affiliation(s)
- Danyi Lu
- a Division of Pharmaceutics , College of Pharmacy, Jinan University , Guangzhou , China and
| | - Hui Liu
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Wencai Ye
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Ying Wang
- b Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Baojian Wu
- a Division of Pharmaceutics , College of Pharmacy, Jinan University , Guangzhou , China and
| |
Collapse
|
8
|
Romand S, Rudaz S, Guillarme D. Separation of substrates and closely related glucuronide metabolites using various chromatographic modes. J Chromatogr A 2016; 1435:54-65. [DOI: 10.1016/j.chroma.2016.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|
9
|
Wang Y, Li Y, Cao H, Xiong M, Shugart YY, Jin L. Efficient test for nonlinear dependence of two continuous variables. BMC Bioinformatics 2015; 16:260. [PMID: 26283601 PMCID: PMC4539721 DOI: 10.1186/s12859-015-0697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/06/2015] [Indexed: 01/28/2023] Open
Abstract
Background Testing dependence/correlation of two variables is one of the fundamental tasks in statistics. In this work, we proposed a new way of testing nonlinear dependence between two continuous variables (X and Y). Results We addressed this research question by using CANOVA (continuous analysis of variance, software available at https://sourceforge.net/projects/canova/). In the CANOVA framework, we first defined a neighborhood for each data point related to its X value, and then calculated the variance of the Y value within the neighborhood. Finally, we performed permutations to evaluate the significance of the observed values within the neighborhood variance. To evaluate the strength of CANOVA compared to six other methods, we performed extensive simulations to explore the relationship between methods and compared the false positive rates and statistical power using both simulated and real datasets (kidney cancer RNA-seq dataset). Conclusions We concluded that CANOVA is an efficient method for testing nonlinear correlation with several advantages in real data applications. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0697-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Yi Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Hongbao Cao
- Unit on Statistical Genomics, Division of Intramural Division Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Momiao Xiong
- Human Genetics Center, School of Public Health, University of Texas Houston Health Sciences Center, Houston, TX, USA.
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Division Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA. .,Division of Intramural Research Program, National Institute of Mental Health, National Institute of Health, Porter Bldg, Room 3A100, Bethesda, MD, 20892, USA.
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China.
| |
Collapse
|
10
|
Ziegler K, Tumova S, Kerimi A, Williamson G. Cellular asymmetric catalysis by UDP-glucuronosyltransferase 1A8 shows functional localization to the basolateral plasma membrane. J Biol Chem 2015; 290:7622-33. [PMID: 25586184 DOI: 10.1074/jbc.m114.634428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are highly expressed in liver, intestine and kidney, and catalyze the glucuronic acid conjugation of both endogenous compounds and xenobiotics. Using recombinant human UGT isoforms, we show that glucuronic acid conjugation of the model substrate, (-)-epicatechin, is catalyzed mainly by UGT1A8 and UGT1A9. In HepG2 cells, pretreatment with polyunsaturated fatty acids increased substrate glucuronidation. In the intestinal Caco-2/HT29-MTX co-culture model, overall relative glucuronidation rates were much higher than in HepG2 cells, and (-)-epicatechin was much more readily conjugated when applied to the basolateral side of the cell monolayer. Under these conditions, 95% of the conjugated product was effluxed back to the site of application, and none of the other phase 2-derived metabolites followed this distribution pattern. HT29-MTX cells contained >1000-fold higher levels of UGT1A8 mRNA than Caco-2 or HepG2 cells. Gene expression of UGT1A8 increased after treatment of cells with docosahexaenoic acid, as did UGT1A protein levels. Immunofluorescence staining and Western blotting showed the presence of UGT1A in the basal and lateral parts of the plasma membrane of HT29-MTX cells. These results suggest that some of the UGT1A8 enzyme is not residing in the endoplasmic reticulum but spans the plasma membrane, resulting in increased accessibility to compounds outside the cell. This facilitates more efficient conjugation of substrate and is additionally coupled with rapid efflux by functionally associated basolateral transporters. This novel molecular strategy allows the cell to carry out conjugation without the xenobiotic entering into the interior of the cell.
Collapse
Affiliation(s)
- Kerstin Ziegler
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sarka Tumova
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Asimina Kerimi
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary Williamson
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
11
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
12
|
Kim KA, Cha YJ, Lee HM, Joo HJ, Park JY. Effects of the ABCG2 and ABCB1 drug transporter polymorphisms on the pharmacokinetics of bicalutamide in humans. Clin Chim Acta 2014; 438:7-11. [PMID: 25124867 DOI: 10.1016/j.cca.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUNDS Bicalutamide is an oral non-steroidal anti-androgen used in the treatment of prostate cancer. Drug transporters P-glycoprotein encoded by ABCB1 and breast cancer resistance protein (BCRP) encoded by ABCG2 are involved in the transportation of bicalutamide and its treatment failure. We evaluated the roles of ABCB1 and ABCG2 genetic polymorphisms in the pharmacokinetics of bicalutamide in humans. METHODS After a single oral dose of 150mg bicalutamide was administered, plasma concentrations of bicalutamide were measured, and pharmacokinetic analyses were performed in 27 healthy subjects according to ABCB1 (c.1236C>T, c.2677G>T/A, and c.3435C>T) and ABCG2 (c.34G>A and c.421C>A). RESULTS ABCB1 polymorphisms did not affect the plasma levels of bicalutamide and the pharmacokinetic parameters did not differ among ABCB1 genotype groups. However, the ABCG2 c.421C>A polymorphism significantly influenced the plasma levels and pharmacokinetics of bicalutamide gene dose-dependently. CONCLUSIONS The ABCB1 genetic polymorphisms did not influence the pharmacokinetics of bicalutamide. However, ABCG2 c.421C>A significantly and gene dose-dependently influenced its pharmacokinetics, but c.34G>A did not.
Collapse
Affiliation(s)
- Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yu-Jung Cha
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hae-Mi Lee
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyun-Jin Joo
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Hovorka Š, Randová A, Sysel P, Brožová L, Žitka J, Drašar P, Bartovská L, Storch J, Červenková-Šťastná L, Izák P. Describing the sorption characteristics of a ternary system of benzene (1) and alcohol (2) in a nonporous polymer membrane (3) by the Flory-Huggins model. POLYM ENG SCI 2014. [DOI: 10.1002/pen.23990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Štěpán Hovorka
- Faculty of Chemical Engineering; Department of Physical Chemistry; Institute of Chemical Technology Prague; Technická 5 CZ 166 28 Prague 6 - Dejvice Czech Republic
| | - Alena Randová
- Faculty of Chemical Engineering; Department of Physical Chemistry; Institute of Chemical Technology Prague; Technická 5 CZ 166 28 Prague 6 - Dejvice Czech Republic
| | - Petr Sysel
- Faculty of Chemical Technology; Department of Polymers; Institute of Chemical Technology Prague; Technická 5 CZ 166 28 Prague 6 - Dejvice Czech Republic
| | - Libuše Brožová
- Institute of Macromolecular Chemistry AS CR; Heyrovského náměstí 2 CZ-162 06 Prague 6 Czech Republic
| | - Jan Žitka
- Institute of Macromolecular Chemistry AS CR; Heyrovského náměstí 2 CZ-162 06 Prague 6 Czech Republic
| | - Pavel Drašar
- Faculty of Food and Biochemical Technology; Department of Chemistry and Natural Compounds; Institute of Chemical Technology Prague; Technická 5 CZ 166 28 Prague 6 - Dejvice Czech Republic
| | - Lidmila Bartovská
- Faculty of Chemical Engineering; Department of Physical Chemistry; Institute of Chemical Technology Prague; Technická 5 CZ 166 28 Prague 6 - Dejvice Czech Republic
| | - Jan Storch
- Institute of Chemical Process Fundamentals; Rozvojová 135 CZ-165 02 Prague 6 Czech Republic
| | | | - Pavel Izák
- Institute of Chemical Process Fundamentals; Rozvojová 135 CZ-165 02 Prague 6 Czech Republic
| |
Collapse
|