1
|
Busato S, Ford HR, Abdelatty AM, Estill CT, Bionaz M. Peroxisome Proliferator-Activated Receptor Activation in Precision-Cut Bovine Liver Slices Reveals Novel Putative PPAR Targets in Periparturient Dairy Cows. Front Vet Sci 2022; 9:931264. [PMID: 35903133 PMCID: PMC9315222 DOI: 10.3389/fvets.2022.931264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic challenges experienced by dairy cows during the transition between pregnancy and lactation (also known as peripartum), are of considerable interest from a nutrigenomic perspective. The mobilization of large amounts of non-esterified fatty acids (NEFA) leads to an increase in NEFA uptake in the liver, the excess of which can cause hepatic accumulation of lipids and ultimately fatty liver. Interestingly, peripartum NEFA activate the Peroxisome Proliferator-activated Receptor (PPAR), a transcriptional regulator with known nutrigenomic properties. The study of PPAR activation in the liver of periparturient dairy cows is thus crucial; however, current in vitro models of the bovine liver are inadequate, and the isolation of primary hepatocytes is time consuming, resource intensive, and prone to errors, with the resulting cells losing characteristic phenotypical traits within hours. The objective of the current study was to evaluate the use of precision-cut liver slices (PCLS) from liver biopsies as a model for PPAR activation in periparturient dairy cows. Three primiparous Jersey cows were enrolled in the experiment, and PCLS from each were prepared prepartum (−8.0 ± 3.6 DIM) and postpartum (+7.7± 1.2 DIM) and treated independently with a variety of PPAR agonists and antagonists: the PPARα agonist WY-14643 and antagonist GW-6471; the PPARδ agonist GW-50156 and antagonist GSK-3787; and the PPARγ agonist rosiglitazone and antagonist GW-9662. Gene expression was assayed through RT-qPCR and RNAseq, and intracellular triacylglycerol (TAG) concentration was measured. PCLS obtained from postpartum cows and treated with a PPARγ agonist displayed upregulation of ACADVL and LIPC while those treated with PPARδ agonist had increased expression of LIPC, PPARD, and PDK4. In PCLS from prepartum cows, transcription of LIPC was increased by all PPAR agonists and NEFA. TAG concentration tended to be larger in tissue slices treated with PPARδ agonist compared to CTR. Use of PPAR isotype-specific antagonists in PCLS cultivated in autologous blood serum failed to decrease expression of PPAR targets, except for PDK4, which was confirmed to be a PPARδ target. Transcriptome sequencing revealed considerable differences in response to PPAR agonists at a false discovery rate-adjusted p-value of 0.2, with the most notable effects exerted by the PPARδ and PPARγ agonists. Differentially expressed genes were mainly related to pathways involved with lipid metabolism and the immune response. Among differentially expressed genes, a subset of 91 genes were identified as novel putative PPAR targets in the bovine liver, by cross-referencing our results with a publicly available dataset of predicted PPAR target genes, and supplementing our findings with prior literature. Our results provide important insights on the use of PCLS as a model for assaying PPAR activation in the periparturient dairy cow.
Collapse
Affiliation(s)
- Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Hunter R. Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Charles T. Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- *Correspondence: Massimo Bionaz
| |
Collapse
|
2
|
Erol SA, Anuk AT, Tanaçan A, Semiz H, Keskin HL, Neşelioğlu S, Erel Ö, Moraloğlu Tekin Ö, Şahin D. An evaluation of maternal serum dynamic thiol-disulfide homeostasis and ischemia modified albumin changes in pregnant women with COVID-19. Turk J Obstet Gynecol 2022; 19:21-27. [PMID: 35343216 PMCID: PMC8966320 DOI: 10.4274/tjod.galenos.2022.72929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: It is thought that oxidative stress, free radicals, reactive oxygen species and reactive nitrogen species affect the pathophysiology of coronavirus disease-2019 (COVID-19). This study aimed to evaluate the oxidative status in pregnant patients with COVID-19 infection according to the changes seen in the levels of maternal serum thiol-disulfide and ischemia-modified albumin (IMA). Materials and Methods: A study group was formed of 40 pregnant women with confirmed COVID-19 infection (study group) and a control group of 40 healthy pregnant women with no risk factors determined. In this prospective, case-controlled study, analyses were made of the maternal serum native thiol, total thiol, disulfide, IMA, and disulfide/native thiol concentrations. Results: The maternal serum native thiol and total thiol concentrations in the study group were determined to be statistically significantly lower (p=0.007 and p=0.006, respectively), and the disulfide/native thiol ratio was higher but not to a level of statistical significance (p=0.473). There was no difference between the two groups regarding IMA levels (p=0.731). Conclusion: The thiol-disulfide balance was seen to shift in the oxidant direction in pregnancies with COVID-19, which might support the view that ischemic processes play a role in the etiopathogenesis of this novel disease.
Collapse
|
3
|
Chen MT, Huang JS, Gao DD, Li YX, Wang HY. Combined treatment with FABP4 inhibitor ameliorates rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Basic Clin Pharmacol Toxicol 2021; 129:173-182. [PMID: 34128319 DOI: 10.1111/bcpt.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Rosiglitazone has been reported to exert dual effects on liver steatosis, and it could exacerbate liver steatosis in obese animal models, which was suggested to be closely related to the elevated hepatic expression of FABP4. This study aimed to investigate whether combined treatment with FABP4 inhibitor I-9 could alleviate rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Male C57BL/KsJ-db/db mice were orally treated with rosiglitazone, rosiglitazone combined with I-9 daily for 8 weeks. The liver steatosis was evaluated by triglyceride content and H&E staining. The expression of hepatic lipogenic genes or proteins in liver tissue or in FFA-treated hepatocytes and PMA-stimulated macrophages were determined by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting. Results showed that combined treatment with I-9 decreased rosiglitazone-induced increase in serum FABP4 level and expression of lipogenic genes in liver, especially FABP4, and ameliorated liver steatosis in db/db mice. Rosiglitazone-induced intracellular TG accumulation and increased expression of FABP4 in the cultured hepatocytes and macrophages were also suppressed by combined treatment. We concluded that combined treatment with FABP4 inhibitor I-9 could ameliorate rosiglitazone-exacerbated elevated serum FABP4 level and ectopic liver fat accumulation in obese diabetic db/db mice without affecting its anti-diabetic efficacy.
Collapse
Affiliation(s)
- Meng-Ting Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Shang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Ding Gao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ying-Xia Li
- School of Pharmacy, Fudan University, Shanghai, China
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Data on Adiponectin from 2010 to 2020: Therapeutic Target and Prognostic Factor for Liver Diseases? Int J Mol Sci 2020; 21:ijms21155242. [PMID: 32718097 PMCID: PMC7432057 DOI: 10.3390/ijms21155242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The review describes the role of adiponectin in liver diseases in the presence and absence of surgery reported in the literature in the last ten years. The most updated therapeutic strategies based on the regulation of adiponectin including pharmacological and surgical interventions and adiponectin knockout rodents, as well as some of the scientific controversies in this field, are described. Whether adiponectin could be a potential therapeutic target for the treatment of liver diseases and patients submitted to hepatic resection or liver transplantation are discussed. Furthermore, preclinical and clinical data on the mechanism of action of adiponectin in different liver diseases (nonalcoholic fatty disease, alcoholic liver disease, nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma) in the absence or presence of surgery are evaluated in order to establish potential targets that might be useful for the treatment of liver disease as well as in the practice of liver surgery associated with the hepatic resections of tumors and liver transplantation.
Collapse
|
5
|
Abstract
Butein is a plant flavonoid chalcone, with presumed anti-adipogenic properties. It was reported to impair preadipocyte differentiation, limit adipose tissue (AT) development and enhance white AT browning in rodents. In this study, we investigated the hypothesis that these effects of butein may occur via reduction of ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5) expression. Murine 3T3-L1 or 3T3-F442A preadipocytes were differentiated into mature adipocytes in the presence of butein or vehicle. At regular time intervals RNA was collected for gene expression studies. Male hemizygous mice for Tg(Ucp1-luc2,-tdTomato)1Kajim (ThermoMouse) were exposed to butein or vehicle, after which ATs were analyzed for Adamts5 and uncoupling protein-1 (Ucp-1) mRNA level changes. During preadipocyte differentiation, butein (25 – 50 mM) did not affect Adamts5 or Ucp-1 expression. Oil Red O analysis and monitoring of differentiation markers failed to demonstrate effects of butein on the differentiation extent. Furthermore, butein administration to the ThermoMouse (10 or 20 mg/kg, 4 days) or to the C57BL6/Rj mice (20 mg/kg, 4 weeks) did not enhance Adamts5 or Ucp-1 expression. Thus, we could not demonstrate marked effects of butein on the preadipocyte differentiation extent or AT development and browning, nor on Adamts5 or Ucp-1 gene expression during these processes.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Dries Bauters
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H. Roger Lijnen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Hemmeryckx B, Carai P, Roger Lijnen H. ADAMTS5 deficiency in mice does not affect cardiac function. Cell Biol Int 2019; 43:593-604. [DOI: 10.1002/cbin.11130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bianca Hemmeryckx
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, KU Leuven3000 Leuven Belgium
| | - Paolo Carai
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, KU Leuven3000 Leuven Belgium
| | - H. Roger Lijnen
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, KU Leuven3000 Leuven Belgium
| |
Collapse
|
7
|
Xu C, Zhao J, Zhou X, Zhang R, Xie T, Zou Z, Liao L, Dong J. Thiazolidinediones versus metformin on improving abnormal liver enzymes in patients with type 2 diabetes mellitus: a meta-analysis. Oncotarget 2018; 9:12389-12399. [PMID: 29552319 PMCID: PMC5844755 DOI: 10.18632/oncotarget.24222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Background Liver enzyme abnormalities are common in patients with type 2 diabetes. Currently, the inverse relationship between elevated liver enzymes and antidiabetics intake may be explained by rigorous treatment and good control. However, few studies have directly explored the influence of antidiabetics on abnormal liver function, especially the comparison between two insulin sensitizers—thiazolidinediones and metformin. Materials And Methods Databases, including PubMed, Cochrane, CNKI, Wanfang and VIP were searched. Two reviewers performed independently. Meta-analysis was used when studies were homogeneous enough. Results Six studies, including 4726 patients with type 2 diabetes, were involved in this systematic review. Compared with metformin, thiazolidinediones significantly reduced the alanine transaminase, aspartate aminotransferase and gamma-glutamyl transpeptidase. Further subgroup analysis suggested that pioglitazone-treated participants showed vast improvement in decreasing alanine transaminase (MD = -13.70; 95% CI = -16.91 to -10.52; P < 0.00001; I2 = 1%), aspartate aminotransferase (MD = -3.51; 95% CI = -5.74 to –1.28; P = 0.002; I2 = 0%) and gamma-glutamyl transpeptidase (MD = -5.41; 95% CI = -9.40 to -1.42; P = 0.008; I2 = 0%), while rosiglitazone exhibited no difference in lowering corresponding liver enzyme levels. Besides, thiazolidinediones similarly decreased fasting plasma glucose. However, thiazolidinediones were inferior to metformin in lowering HbA1C and alkaline phosphatase. Additionally, no significant publication bias was seen. Conclusions Thiazolidinediones may confer modest biological improvement of liver function in people with type 2 diabetes than metformin. But owing to the limited methodological quality, more clinical researches are warranted in the future.
Collapse
Affiliation(s)
- Chunmei Xu
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Tianyue Xie
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiwei Zou
- Department of Medicine, Division of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Department of Medicine, Division of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
8
|
Xiang L, Li J, Wang Y, Tang R, Wang Q, Wu Q, Qi J. Tetradecyl 2,3-Dihydroxybenzoate Improves the Symptoms of Diabetic Mice by Modulation of Insulin and Adiponectin Signaling Pathways. Front Pharmacol 2017; 8:806. [PMID: 29180962 PMCID: PMC5693855 DOI: 10.3389/fphar.2017.00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Tetradecyl 2,3-dihydroxybenzoate (ABG-001) derived from Chinese medicine, gentiana regescens Franch is a leading compound with NGF mimic effect, it can induce neurite outgrowth of PC12 cells via the IGF-1/PI3K/ERK signaling pathway. Thus, we inferred that this compound had anti-diabetic effect and used streptozocin (STZ)-induced diabetic mice to indicate it. Methods: ABG-001 was synthesized with 2,3-dihydroxybenzoic acid and tetradecyl alcohol under certain reaction conditions. STZ-induced diabetic mice were used to investigate anti-diabetic effect. Oral glucose tolerance test, insulin tolerance test, RT-PCR, Western blot, ELISA assays and histological section were performed to do the analysis of action mechanism. Results: ABG-001 showed anti-diabetic effect in STZ-induced diabetic mice. In diabetic mice, the anti-diabetic effect of ABG-001 at a dose of 20 mg/kg was equal with metformin at a dose of 140 mg/kg. Moreover, glucose tolerance and insulin sensitivity were significantly improved on diabetic mice. The plasma insulin, adiponectin and leptin were notably increased, whereas glucagon remarkably decreased. The gene expressions of adiponectin and leptin in adipose tissue, glucose transporter 4 and adiponectin receptor 1 in liver and gastrocnemius, ADR2 in hypothalamus and pancreas were obviously increased. Conclusion: ABG-001 exerts antidiabetic effects via modulation of insulin and adiponectin signaling pathways. This new type of molecule could be a promising drug candidate for treatment of diabetes.
Collapse
Affiliation(s)
- Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanhui Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ruiqi Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaobei Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Bauters D, Cobbaut M, Geys L, Van Lint J, Hemmeryckx B, Lijnen HR. Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Mol Metab 2017; 6:715-724. [PMID: 28702327 PMCID: PMC5485238 DOI: 10.1016/j.molmet.2017.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/24/2022] Open
Abstract
Objective A potential strategy to treat obesity – and the associated metabolic consequences – is to increase energy expenditure. This could be achieved by stimulating thermogenesis through activation of brown adipose tissue (BAT) and/or the induction of browning of white adipose tissue (WAT). Over the last years, it has become clear that several metalloproteinases play an important role in adipocyte biology. Here, we investigated the potential role of ADAMTS5. Methods Mice deficient in ADAMTS5 (Adamts5−/−) and wild-type (Adamts5+/+) littermates were kept on a standard of Western-type diet for 15 weeks. Energy expenditure and heat production was followed by indirect calorimetry. To activate thermogenesis, mice were treated with the β3-adrenergic receptor (β3-AR) agonist CL-316,243 or alternatively, exposed to cold for 2 weeks. Results Compared to Adamts5+/+ mice, Adamts5−/− mice have significantly more interscapular BAT and marked browning of their subcutaneous (SC) WAT. Thermogenic pathway analysis indicated, in the absence of ADAMTS5, enhanced β3-AR signaling via activation of the cAMP response element-binding protein (CREB). Additional β3-AR stimulation with CL-316,243 promoted browning of WAT in Adamts5+/+ mice but had no additive effect in Adamts5−/− mice. However, cold exposure induced more pronounced browning of WAT in Adamts5−/− mice. Conclusions These data indicate that ADAMTS5 plays a functional role in development of BAT and browning of WAT. Hence, selective targeting of ADAMTS5 could provide a novel therapeutic strategy for treatment/prevention of obesity and metabolic diseases. Mice deficient in ADAMTS5 have elevated interscapular brown adipose tissue mass. ADAMTS5 deficient mice show increased browning of their white adipose tissue. The thermogenic profile is enhanced via adrenergic signaling and CREB activation. ADAMTS5 seems an attractive therapeutic target for metabolic diseases.
Collapse
Key Words
- %ID/g, percentage injected dose per gram
- ADAMTS, A disintesgrin and metalloproteinase with a thrombospondin type-1 motif
- ADAMTS5
- AT, adipose tissue
- BAT, brown adipose tissue
- Beige
- Brown adipose tissue
- Browning
- CREB, cAMP responsive element-binding protein
- ECM, extracellular matrix
- GON, gonadal
- HFD, high-fat diet
- Obesity
- SC, subcutaneous
- SUV, standardized uptake value
- TLG, total lesion glycolysis
- Thermogenesis
- UCP1, uncoupling protein 1
- WAT, white adipose tissue
- β3-AR, beta-3 adrenergic receptor
Collapse
Affiliation(s)
- Dries Bauters
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Mathias Cobbaut
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Lotte Geys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Bianca Hemmeryckx
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| | - H Roger Lijnen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
10
|
He J, Quintana MT, Sullivan J, L Parry T, J Grevengoed T, Schisler JC, Hill JA, Yates CC, Mapanga RF, Essop MF, Stansfield WE, Bain JR, Newgard CB, Muehlbauer MJ, Han Y, Clarke BA, Willis MS. MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovasc Diabetol 2015; 14:97. [PMID: 26242235 PMCID: PMC4526192 DOI: 10.1186/s12933-015-0252-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulated in the heart is largely unknown. Recent studies have described post-translational ubiquitination of PPARs as ways in which PPAR activity is inhibited in cancer. However, specific mechanisms in the heart have not previously been described. Recent studies have implicated the muscle-specific ubiquitin ligase muscle ring finger-2 (MuRF2) in inhibiting the nuclear transcription factor SRF. Initial studies of MuRF2-/- hearts revealed enhanced PPAR activity, leading to the hypothesis that MuRF2 regulates PPAR activity by post-translational ubiquitination. METHODS MuRF2-/- mice were challenged with a 26-week 60% fat diet designed to simulate obesity-mediated insulin resistance and diabetic cardiomyopathy. Mice were followed by conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1-regulated mRNA expression. RESULTS MuRF2 protein levels increase ~20% during the development of diabetic cardiomyopathy induced by high fat diet. Compared to littermate wildtype hearts, MuRF2-/- hearts exhibit an exaggerated diabetic cardiomyopathy, characterized by an early onset systolic dysfunction, larger left ventricular mass, and higher heart weight. MuRF2-/- hearts had significantly increased PPARα- and PPARγ1-regulated gene expression by RT-qPCR, consistent with MuRF2's regulation of these transcription factors in vivo. Mechanistically, MuRF2 mono-ubiquitinated PPARα and PPARγ1 in vitro, consistent with its non-degradatory role in diabetic cardiomyopathy. However, increasing MuRF2:PPARγ1 (>5:1) beyond physiological levels drove poly-ubiquitin-mediated degradation of PPARγ1 in vitro, indicating large MuRF2 increases may lead to PPAR degradation if found in other disease states. CONCLUSIONS Mutations in MuRF2 have been described to contribute to the severity of familial hypertrophic cardiomyopathy. The present study suggests that the lack of MuRF2, as found in these patients, can result in an exaggerated diabetic cardiomyopathy. These studies also identify MuRF2 as the first ubiquitin ligase to regulate cardiac PPARα and PPARγ1 activities in vivo via post-translational modification without degradation.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA. .,General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA.
| | - Jenyth Sullivan
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA.
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| | - Jonathan C Schisler
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Cecelia C Yates
- Department of Health Promotions and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Rudo F Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | | | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. .,Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. .,Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
| | - Yipin Han
- East Chapel Hill High School, Chapel Hill, NC, USA.
| | - Brian A Clarke
- Novartis, Novartis Institutes for BioMedical Research, Inc., 400 Technology Square, Boston, MA, 601-4214, USA.
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA. .,McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA.
| |
Collapse
|