1
|
Kassa J, Zdarova Karasova J. Combination of acetylcholinesterase inhibitors and NMDA receptor antagonists increases survival rate in soman-poisoned mice. Toxicol Mech Methods 2023; 33:590-595. [PMID: 37051629 DOI: 10.1080/15376516.2023.2202730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/19/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Organophosphorus nerve agents pose a global threat to both military personnel and civilian population, because of their high acute toxicity and insufficient medical countermeasures. Commonly used drugs could ameliorate the intoxication and overall medical outcomes. In this study, we tested the drugs able to alleviate the symptoms of Alzheimer's disease (donepezil, huperzine A, memantine) or Parkinson's disease (procyclidine). They were administered to mice before soman intoxication in terms of their: i) protection potential against soman toxicity and ii) influence on post-exposure therapy consisting of atropine and asoxime (also known as oxime HI-6). Their pretreatment effect was not significant, when administered alone, but in combination (acetylcholinesterase inhibitor such as denepezil or huperzine A with NMDA antagonist such as memantine or procyclidine) they lowered the soman toxicity more than twice. These combinations also positively influenced the efficacy of post-exposure treatment in a similar fashion; the combinations increased the therapeutic effectiveness of antidotal treatment. In conclusion, the most effective combination - huperzine A and procyclidine - lowered the toxicity three times and improved the post-exposure therapy efficacy more than six times. These results are unprecedented in the published literature.
Collapse
Affiliation(s)
- Jiri Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Nepovimova E, Korabecny J, Hepnarova V, Jun D, Dolezal R, Muckova L, Jost P, Soukup O, Janockova J, Pham NL, Nguyen TD, Valis M, Kuca K. N-alkylated Tacrine Derivatives as Potential Agents in Alzheimer's Disease Therapy. Curr Alzheimer Res 2020; 16:333-343. [PMID: 30873921 DOI: 10.2174/1567205016666190314163942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/19/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Based on the prevalence studies, the number of people suffering from dementia will almost double every 20 years, to 65.7 million in 2030 and 115.4 million in 2050, assuming no changes in mortality, effective preventative measures, definitive diagnostic guidelines or curative treatment. From the abovementioned epidemiological data, it is obvious that dementia constitutes a major public health problem not only at present, but unfortunately also in the future. OBJECTIVES AND METHODS Several N-alkylated tacrine (THA) derivatives have already been synthesized by Pomponi et al., in 1997. However, these compounds were tested for their anti-AChE activity using enzyme isolated from Electrophorus electricus. For this reason, we have decided to extend the previously reported series of THA derivatives and consequently test them in the battery of experiments, the results of which have served to more relevant evaluation of these compounds from the perspective of Alzeimer´s disease compared to that published by Pomponi. RESULTS AND CONCLUSION In summary, all compounds of interest effectively inhibited ChEs in vitro. One of the most promising derivatives 8 bearing an N-octyl chain showed 2.5-fold higher AChE inhibitory activity in relation to tacrine. With respect to blood-brain barrier (BBB) penetration, it can be claimed that synthesized analogues are presumably able to cross the BBB. From the point of view of hepatotoxicity, selected Nalkylated tacrine derivatives exerted worse results compared to tacrine. However, in vitro results are only illustrative, therefore, only in vivo experiments could determine the real value of selected N-alkylated THA derivatives.
Collapse
Affiliation(s)
- Eugenie Nepovimova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.,Department of Intensive Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.,Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.,Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.,Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.,Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ngoc Lam Pham
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Thuy Duong Nguyen
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Martin Valis
- Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870/13, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.,Biomedical Research Center; Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Poisoning with Soman, an Organophosphorus Nerve Agent, Alters Fecal Bacterial Biota and Urine Metabolites: a Case for Novel Signatures for Asymptomatic Nerve Agent Exposure. Appl Environ Microbiol 2018; 84:AEM.00978-18. [PMID: 30217846 DOI: 10.1128/aem.00978-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
The experimental pathophysiology of organophosphorus (OP) chemical exposure has been extensively reported. Here, we describe an altered fecal bacterial biota and urine metabolome following intoxication with soman, a lipophilic G class chemical warfare nerve agent. Nonanesthetized Sprague-Dawley male rats were subcutaneously administered soman at 0.8 (subseizurogenic) or 1.0 (seizurogenic) of the 50% lethal dose (LD50) and evaluated for signs of toxicity. Animals were stratified based on seizing activity to evaluate effects of soman exposure on fecal bacterial biota and urine metabolites. Soman exposure reshaped fecal bacterial biota by altering Facklamia, Rhizobium, Bilophila, Enterobacter, and Morganella genera of the Firmicutes and Proteobacteria phyla, some of which are known to hydrolyze OP chemicals. However, analogous changes were not observed in the bacterial biota of the ileum, which remained the same irrespective of dose or seizing status of animals after soman intoxication. However, at 75 days after soman exposure, the bacterial biota stabilized and no differences were observed between groups. Interestingly, in considering just the seizing status of animals, we found that the urine metabolomes were markedly different. Leukotriene C4, kynurenic acid, 5-hydroxyindoleacetic acid, norepinephrine, and aldosterone were excreted at much higher rates at 72 h in seizing animals, consistent with early multiorgan involvement during soman poisoning. These findings demonstrate the feasibility of using the dysbiosis of fecal bacterial biota in combination with urine metabolome alterations as forensic evidence for presymptomatic OP exposure temporally to enable administration of neuroprotective therapies of the future.IMPORTANCE The paucity of assays to determine physiologically relevant OP exposure presents an opportunity to explore the use of fecal bacteria as sentinels in combination with urine to assess changes in the exposed host. Recent advances in sequencing technologies and computational approaches have enabled researchers to survey large community-level changes of gut bacterial biota and metabolomic changes in various biospecimens. Here, we profiled changes in fecal bacterial biota and urine metabolome following a chemical warfare nerve agent exposure. The significance of this work is a proof of concept that the fecal bacterial biota and urine metabolites are two separate biospecimens rich in surrogate indicators suitable for monitoring OP exposure. The larger value of such an approach is that assays developed on the basis of these observations can be deployed in any setting with moderate clinical chemistry and microbiology capability. This can enable estimation of the affected radius as well as screening, triage, or ruling out of suspected cases of exposures in mass casualty scenarios, transportation accidents involving hazardous materials, refugee movements, humanitarian missions, and training settings when coupled to an established and validated decision tree with clinical features.
Collapse
|