1
|
Stevanović J, Glavinić U, Ristanić M, Erjavec V, Denk B, Dolašević S, Stanimirović Z. Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being. Pharmaceuticals (Basel) 2024; 17:1050. [PMID: 39204155 PMCID: PMC11357515 DOI: 10.3390/ph17081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
Collapse
Affiliation(s)
- Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey;
| | | | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| |
Collapse
|
2
|
Rivera-Yañez N, Ruiz-Hurtado PA, Rivera-Yañez CR, Arciniega-Martínez IM, Yepez-Ortega M, Mendoza-Arroyo B, Rebollar-Ruíz XA, Méndez-Cruz AR, Reséndiz-Albor AA, Nieto-Yañez O. The Role of Propolis as a Natural Product with Potential Gastric Cancer Treatment Properties: A Systematic Review. Foods 2023; 12:foods12020415. [PMID: 36673507 PMCID: PMC9858610 DOI: 10.3390/foods12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Gastric cancer is one of the most common, aggressive, and invasive types of malignant neoplasia. It ranks fifth for incidence and fourth for prevalence worldwide. Products of natural origin, such as propolis, have been assessed for use as new complementary therapies to combat cancer. Propolis is a bee product with antiproliferative and anticancer properties. The concentrations and types of secondary metabolites contained in propolis mainly vary according to the geographical region, the season of the year, and the species of bees that make it. The present study is a systematic review of the main articles related to the effects of propolis against gastric cancer published between 2011 and 2021 in the PubMed and Science Direct databases. Of 1305 articles published, only eight studies were selected; among their principal characteristics was the use of in vitro analysis with cell lines from gastric adenocarcinoma and in vivo murine models of the application of propolis treatments. These studies suggest that propolis arrests the cell cycle and inhibits proliferation, prevents the release of oxidizing agents, and promotes apoptosis. In vivo assays showed that propolis decreased the number of tumors by regulating the cell cycle and the expression of proteins related to apoptosis.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México 07738, Mexico
- Laboratorio de Toxicología Molecular y Celular, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Claudia Rebeca Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunonutrición, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Mariazell Yepez-Ortega
- Laboratorio de Inmunonutrición, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Belén Mendoza-Arroyo
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Xóchitl Abril Rebollar-Ruíz
- Laboratorio de Inmunonutrición, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Ciudad de México 11340, Mexico
- Correspondence: (A.A.R.-A.); (O.N.-Y.); Tel.: +52-5521-327-136 (O.N.-Y.)
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Correspondence: (A.A.R.-A.); (O.N.-Y.); Tel.: +52-5521-327-136 (O.N.-Y.)
| |
Collapse
|
3
|
Darwish MH, Hassan MM, Maria OM. Evaluation of differential white blood cell count and cheek pouch epithelium in 7,12-dimethylbenza[a]anthracene hamster carcinogenesis model, managed with three phytochemicals. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2023. [DOI: 10.1051/mbcb/2023005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives: Nigella sativa (NS), thymoquinone (TQ), and epigallocatechin-3-gallate (EGCG) are phytochemicals that might have antioxidant protective potentials on the hamster cheek pouch epithelium (HCPE). We aimed at evaluating and comparing the potential therapeutic outcomes of these 3 phytochemicals by analysis of peripheral white blood cells (WBCs) counts. Materials and Methods: NS whole oil, TQ and EGCG were administered before, with or after 7,12-dimethylbenza[a]anthracene (DMBA) painting the hamster left cheek pouch. Before sacrificing each animal, 2 ml of blood was withdrawn into a fine heparin-containing tube to estimate the total WBCs, lymphocytes, MID cells, and granulocytes counts by an automatic count system. All cheek pouches were surgically excised and examined with light microscope. Results: Severe epithelial dysplasia was evident after 6 weeks of DMBA administration, and when NS was given for 2 weeks followed by DMBA for 6 weeks. When NS or EGCG were given for 2 weeks then continued with DMBA for 6 weeks, mild dysplasia was seen. When DMBA was given for 6 weeks followed by NS or TQ for 6 weeks, mild dysplasia was noted. Administration of DMBA for 6 weeks resulted in significant reduction in total WBCs and lymphocytes counts compared to healthy controls. Administration of NS or TQ for 2 weeks resulted in significant elevation in lymphocytes count compared to healthy controls. Significant elevation in total WBCS and lymphocytes counts was noted when EGCG was given for 2 weeks and continued with DMBA for other 6 weeks. Similar results were noted when DMBA was given for 6 weeks followed by TQ for 6 weeks when compared to NS, DMBA or healthy controls. Discussion: The three phytochemicals showed different levels of protection against DMBA carcinogenic activity, more specifically, TQ and NS had higher therapeutic potential and might be used for treatment and/or preventive management of oral cancer in the future. Conclusion: However, further investigations are required to address the mechanism of action and feasibility of clinical application of each phytochemical.
Collapse
|
4
|
An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5901191. [PMID: 35754701 PMCID: PMC9232326 DOI: 10.1155/2022/5901191] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Propolis is a natural compound collected by honeybees from different parts of plants. Honeybees produce a sticky component besides honey by mixing the tree resin and other botanical sources with saliva called propolis or bee glue. Propolis was traditionally used as a wound healing substance, cosmetic, medicine, and many other conditions. Till now, there is no definite curable treatment for most cancers and chemotherapeutic drugs and drugs used for targeted therapies have serious side effects. According to a recent research, natural products are becoming increasingly essential in cancer prevention. Natural products are a great source of potential therapeutic agents, especially in the treatment of cancer. Previous studies have reported that the presence of caffeic acid phenethyl ester (CAPE), artepillin C, and chrysin is responsible for the anticancer potential of propolis. Most of the previous studies suggested that propolis and its active compounds inhibit cancer progression by targeting multiple signaling pathways including phosphoinositide 3-kinases (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling molecules, and induce cell cycle arrest. Induction of apoptosis by propolis is mediated through extrinsic and intrinsic apoptotic pathways. The aim of this review is to highlight and summarize the molecular targets and anticancer potential of propolis and its active compounds on cell survival, proliferation, metastasis, and apoptosis in cancer cells.
Collapse
|
5
|
Nör F, Nör C, Bento LW, Zhang Z, Bretz WA, Nör JE. Propolis reduces the stemness of head and neck squamous cell carcinoma. Arch Oral Biol 2021; 125:105087. [PMID: 33639480 DOI: 10.1016/j.archoralbio.2021.105087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the effect of Brazilian propolis on head and neck cancer stem cells in vitro. METHODS Head and neck squamous cell carcinoma (HNSCC) cell lines (UM-SCC-17B and UM-SCC-74A), human keratinocytes (HK), and primary human dermal microvascular endothelial cells (HDMEC) were treated with 0.5, 5.0, or 50 μg/mL green, brown or red Brazilian propolis or vehicle control for 24, 36, and 72 h. Cell viability was evaluated by Sulforhodamine B assay. Western blots evaluated expression of cancer stem cell (CSC) markers (i.e. ALDH, CD44, Oct-4, Bmi-1) and flow cytometry was performed to determine the impact of propolis in the fraction of CSC, defined as ALDHhighCD44high cells. RESULTS propolis significantly reduced cell viability of HNSCC and HDMEC cells, but not HK. Notably, red propolis caused a significant reduction in the percentage of CSC, reduced the number of orospheres, and downregulated the expression of stem cell markers. CONCLUSIONS Collectively, our data demonstrate an anti-CSC effect of propolis, and suggest that propolis (i.e. red propolis) might be beneficial for patients with head and neck cancer.
Collapse
Affiliation(s)
- Felipe Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Oral Pathology, Radiology & Medicine, University of Iowa College of Dentistry, Iowa City, IA, USA.
| | - Carolina Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Letícia W Bento
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients 2020; 13:E78. [PMID: 33383693 PMCID: PMC7823938 DOI: 10.3390/nu13010078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
The use of alternative medicine products has increased tremendously in recent decades and it is estimated that approximately 80% of patients globally depend on them for some part of their primary health care. Propolis is a beekeeping product widely used in alternative medicine. It is a natural resinous product that bees collect from various plants and mix with beeswax and salivary enzymes and comprises a complex mixture of compounds. Various biomedical properties of propolis have been studied and reported in infectious and non-infectious diseases. However, the pharmacological activity and chemical composition of propolis is highly variable depending on its geographical origin, so it is important to describe and study the biomedical properties of propolis from different geographic regions. A number of chronic diseases, such as diabetes, obesity, and cancer, are the leading causes of global mortality, generating significant economic losses in many countries. In this review, we focus on compiling relevant information about propolis research related to diabetes, obesity, and cancer. The study of propolis could generate both new and accessible alternatives for the treatment of various diseases and will help to effectively evaluate the safety of its use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Claudia F. Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Adolfo R. Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico
| |
Collapse
|
7
|
de Mendonça MAA, Ribeiro ARS, de Lima AK, Bezerra GB, Pinheiro MS, de Albuquerque-Júnior RLC, Gomes MZ, Padilha FF, Thomazzi SM, Novellino E, Santini A, Severino P, B. Souto E, Cardoso JC. Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients 2020; 12:nu12102951. [PMID: 32993069 PMCID: PMC7600383 DOI: 10.3390/nu12102951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Propolis has various pharmacological properties of clinical interest, and is also considered a functional food. In particular, hydroalcoholic extracts of red propolis (HERP), together with its isoflavonoid formononetin, have recognized antioxidant and anti-inflammatory properties, with known added value against dyslipidemia. In this study, we report the gastroprotective effects of HERP (50–500 mg/kg, p.o.) and formononetin (10 mg/kg, p.o.) in ethanol and non-steroidal anti-inflammatory drug-induced models of rat ulcer. The volume, pH, and total acidity were the evaluated gastric secretion parameters using the pylorus ligature model, together with the assessment of gastric mucus contents. The anti-Helicobacter pylori activities of HERP were evaluated using the agar-well diffusion method. In our experiments, HERP (250 and 500 mg/kg) and formononetin (10 mg/kg) reduced (p < 0.001) total lesion areas in the ethanol-induced rat ulcer model, and reduced (p < 0.05) ulcer indices in the indomethacin-induced rat ulcer model. Administration of HERP and formononetin to pylorus ligature models significantly decreased (p < 0.01) gastric secretion volumes and increased (p < 0.05) mucus production. We have also shown the antioxidant and anti-Helicobacter pylori activities of HERP. The obtained results indicate that HERP and formononetin are gastroprotective in acute ulcer models, suggesting a prominent role of formononetin in the effects of HERP.
Collapse
Affiliation(s)
- Marcio A. A. de Mendonça
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ana R. S. Ribeiro
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Adriana K. de Lima
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Gislaine B. Bezerra
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Malone S. Pinheiro
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ricardo L. C. de Albuquerque-Júnior
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Margarete Z. Gomes
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Francine F. Padilha
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Sara M. Thomazzi
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Patricia Severino
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Juliana C. Cardoso
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| |
Collapse
|
8
|
Hotta S, Uchiyama S, Ichihara K. Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivo. Biosci Biotechnol Biochem 2020; 84:1820-1830. [PMID: 32490727 DOI: 10.1080/09168451.2020.1773756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brazilian red propolis reportedly has reactive oxygen species (ROS) scavenging effects in vitro, but the cellular mechanisms remain unclear. In the present study, the effects of an ethanol extract of Brazilian red propolis (EERP) on the Nrf2-ARE intracellular antioxidant pathway were examined in vitro and in vivo. EERP and its constituents transactivated the reporter gene through the ARE sequence and enhanced the expression of Nrf2-regulated genes in HEK293 cells. It also increased Nrf2 protein in the nucleus, which was partially inhibited by kinase inhibitors. Furthermore, EERP suppressed ROS generation and cytotoxicity induced by tert-butyl hydroperoxide. In vivo, orally administered EERP increased the expression of Nrf2-regulated genes in mice liver. These results suggest that EERP is a potential resource for preventing oxidative stress-related diseases as an Nrf2 inducer.
Collapse
Affiliation(s)
- Sho Hotta
- Nagaragawa Research Center, API Co., Ltd , Gifu, Japan
| | | | | |
Collapse
|
9
|
Wezgowiec J, Wieczynska A, Wieckiewicz W, Kulbacka J, Saczko J, Pachura N, Wieckiewicz M, Gancarz R, Wilk KA. Polish Propolis-Chemical Composition and Biological Effects in Tongue Cancer Cells and Macrophages. Molecules 2020; 25:molecules25102426. [PMID: 32455950 PMCID: PMC7287845 DOI: 10.3390/molecules25102426] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to compare the chemical composition and biological properties of Polish propolis. Ethanol, ethanol-hexane, hexane and hexane-ethanol extracts of propolis from three different regions of Poland were prepared. On the basis of the evaluation of their chemical composition as well as the extraction yield and free radical scavenging activity, the ethanol and hexane-ethanol extractions were proposed as the most effective methods. Subsequently, the biological properties of the extracts were evaluated to investigate the selectivity of an anticancer effect on tongue cancer cells in comparison to normal gingival fibroblasts. The obtained products demonstrated anticancer activity against tongue cancer cells. Additionally, when the lowest extract concentration (100 µg/mL) was applied, they were not cytotoxic to gingival fibroblasts. Finally, a possible anti-inflammatory potential of the prepared products was revealed, as reduced mitochondrial activity and proliferation of macrophages exposed to the extracts were observed. The results obtained indicate a potential of Polish propolis as a natural product with cancer-selective toxicity and anti-inflammatory effect. However, further studies are still needed to thoroughly explain the molecular mechanisms of its action and to obtain the promising health benefits of this versatile natural product.
Collapse
Affiliation(s)
- Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
- Correspondence: (J.W.); (W.W.)
| | - Anna Wieczynska
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.W.); (R.G.); (K.A.W.)
- Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Wlodzimierz Wieckiewicz
- Department of Prosthetic Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence: (J.W.); (W.W.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.K.); (J.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.K.); (J.S.)
| | - Natalia Pachura
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Roman Gancarz
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.W.); (R.G.); (K.A.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.W.); (R.G.); (K.A.W.)
| |
Collapse
|
10
|
de Carvalho FMDA, Schneider JK, de Jesus CVF, de Andrade LN, Amaral RG, David JM, Krause LC, Severino P, Soares CMF, Caramão Bastos E, Padilha FF, Gomes SVF, Capasso R, Santini A, Souto EB, de Albuquerque-Júnior RLC. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020; 10:biom10050726. [PMID: 32384801 PMCID: PMC7277404 DOI: 10.3390/biom10050726] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Brazilian red propolis has been proposed as a new source of compounds with cytotoxic activity. Red propolis is a resinous material of vegetal origin, synthesized from the bees of the Appis mellifera family, with recognized biological properties. To obtain actives of low polarity and high cytotoxic profile from red propolis, in this work, we proposed a new solvent accelerated extraction method. A complete 23 factorial design was carried out to evaluate the influence of the independent variables or factors (e.g., temperature, number of cycles, and extraction time) on the dependent variable or response (i.e., yield of production). The extracts were analyzed by gas chromatography coupled with mass spectrometry for the identification of chemical compounds. Gas chromatography analysis revealed the presence of hydrocarbons, alcohols, ketones, ethers, and terpenes, such as lupeol, lupenone, and lupeol acetate, in most of the obtained extracts. To evaluate the cytotoxicity profile of the obtained bioactives, the 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide colorimetric assay was performed in different tumor cell lines (HCT116 and PC3). The results show that the extract obtained from 70 °C and one cycle of extraction of 10 min exhibited the highest cytotoxic activity against the tested cell lines. The highest yield, however, did not indicate the highest cytotoxic activity, but the optimal extraction conditions were indeed dependent on the temperature (i.e., 70 °C).
Collapse
Affiliation(s)
- Felipe Mendes de Andrade de Carvalho
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Jaderson Kleveston Schneider
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Carla Viviane Freitas de Jesus
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Luciana Nalone de Andrade
- Federal University of Sergipe (UFS), Avenida Marechal Rondon, São Cristovão 49100-000, Brazil; (L.N.d.A.); (R.G.A.)
| | - Ricardo Guimarães Amaral
- Federal University of Sergipe (UFS), Avenida Marechal Rondon, São Cristovão 49100-000, Brazil; (L.N.d.A.); (R.G.A.)
| | | | - Laíza Canielas Krause
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Patrícia Severino
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Cleide Mara Faria Soares
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Elina Caramão Bastos
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Francine Ferreira Padilha
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Silvana Vieira Flores Gomes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| | - Ricardo Luiz Cavalcanti de Albuquerque-Júnior
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| |
Collapse
|
11
|
Reis JHDO, Barreto GDA, Cerqueira JC, dos Anjos JP, Andrade LN, Padilha FF, Druzian JI, Machado BAS. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS One 2019; 14:e0219063. [PMID: 31276476 PMCID: PMC6611595 DOI: 10.1371/journal.pone.0219063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/16/2019] [Indexed: 12/20/2022] Open
Abstract
Propolis is a complex mixture of resinous and balsamic material collected from the exudates of plants, shoots, and leaves by bees. This study evaluated red propolis extracts obtained by conventional (ethanolic) extraction and ultrasound-assisted extraction of six samples from different regions of northeastern Brazil. The total phenolic compounds and flavonoids, in vitro antioxidant activity, concentration of formononetin and kaempferol and the cytotoxicity against four human tumor cell lines were determined for all twelve obtained extracts. Significant variations in the levels of the investigated compounds were identified in the red propolis extracts, confirming that the chemical composition varied according to the sampling region. The extraction method used also influenced the resulting propolis compounds. The highest concentration of the compounds of interest and the highest in vitro antioxidant activity were exhibited by the extracts obtained from samples from state of Alagoas. Formononetin and kaempferol were identified in all samples. The highest formononetin concentrations were identified in extracts obtained by ultrasound, thus indicating a greater selectivity for the extraction of this compound by this method. Regarding cytotoxic activity, for the HCT-116 line, all of the extracts showed an inhibition of greater than 90%, whereas for the HL-60 and PC3 lines, the minimum identified was 80%. In general, there was no significant difference (p>0.05) in the antiproliferative potential when comparing the extraction methods. The results showed that the composition of Brazilian red propolis varies significantly depending on the geographical origin and that the method used influences the resulting compounds that are present in propolis. However, regardless of the geographical origin and the extraction method used, all the red propolis samples studied presented great biological potential and high antioxidant activity. Furthermore, the ultrasound-assisted method can be efficiently applied to obtain extracts of red propolis more quickly and with high concentration of biomarkers of interest.
Collapse
Affiliation(s)
| | - Gabriele de Abreu Barreto
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jamile Costa Cerqueira
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jeancarlo Pereira dos Anjos
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
12
|
Carvalho CD, Fernandes WHC, Mouttinho TBF, Souza DMD, Marcucci MC, D’Alpino PHP. Evidence-Based Studies and Perspectives of the Use of Brazilian Green and Red Propolis in Dentistry. Eur J Dent 2019; 13:459-465. [PMID: 31795009 PMCID: PMC6890504 DOI: 10.1055/s-0039-1700598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This review analyzes the evidence and perspectives of dental use of the green and red propolis produced in Brazil by Apis mellifera L. Multiple applications of propolis were found considering its antibacterial, antifungal, anti-inflammatory, immunomodulatory, antiviral, and healing properties. Its therapeutic effects are mainly due to the presence of alcohols, aldehydes, aliphatic acids, aliphatic esters, amino acids, aromatic acids, aromatic esters, flavonoids, hydrocarbyl esters, ethers, fatty acids, ketones, terpenes, steroids, and sugars. Propolis has been mainly used in dentistry in the composition of dentifrices and mouthwashes. Studies have also demonstrated promising use against dentin hypersensitivity, root canal treatment, Candida albicans, and other microorganisms. Overall review of the literature presented here demonstrated that both Brazilian green and red propolis are effective for the problems of multiple etiologies that affect the oral cavity in different dental specialties.
Collapse
Affiliation(s)
| | | | | | | | - Maria Cristina Marcucci
- Laboratory of Natural Products and Chemometrics, Programa de Pós-Graduação Stricto sensu em Farmácia, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Stricto sensu em Biotecnologia e Inovação em Saúde, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Paulo Henrique Perlatti D’Alpino
- Programa de Pós-Graduação Stricto sensu em Biotecnologia e Inovação em Saúde, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Stricto sensu em Ensino de Ciências em Saúde, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Ren L, Konger RL. Evidence that peroxisome proliferator-activated receptor γ suppresses squamous carcinogenesis through anti-inflammatory signaling and regulation of the immune response. Mol Carcinog 2019; 58:1589-1601. [PMID: 31111568 DOI: 10.1002/mc.23041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 01/13/2023]
Abstract
A variety of evidence suggests that peroxisome proliferator-activated receptor (PPAR)γ agonists may represent a potential pharmacologic target in the prevention or treatment of skin cancer. In particular, recent reports suggest that PPARγ activation may exert at least some of its anti-neoplastic effects through the suppression of tumor promoting chronic inflammation as well as by strengthening antitumor immune responses. This activity is thought to occur through a distinct mode of ligand interaction with PPARγ that causes transrepression of transcription factors that are involved in inflammatory and immunomodulatory signaling. However, current thiazolidinedione (TZD)-type PPARγ agonists have significant safety concerns that limit their usefulness as a preventive or therapeutic option. Due to the relatively large ligand binding pocket of PPARγ, a diverse group of ligands can be seen to interact with distinct modes of binding to PPARγ, leading to the phenomenon of partial agonist activity and selective PPARγ modulators (SPPARγM). This has led to the development of ligands that are tailored to deliver desired pharmacologic activity, but lack some of the negative side effects associated with full agonists, such as the currently utilized TZD-type PPARγ agonists. In addition, there is evidence that a number of phytochemicals that are currently being touted as antineoplastic nutraceuticals also possess PPARγ activity that may partially explain their pharmacologic activity. We propose that one or more of these partial agonists, SPPARγMs, or putative phytochemical PPARγ ligands could presumably be used as a starting point to design more efficacious anti-neoplastic PPARγ ligands that lack adverse pharmacological effects.
Collapse
Affiliation(s)
- Lu Ren
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pathology and Laboratory Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Raymond L Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pathology and Laboratory Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
14
|
Juanes CDC, Souza SMD, Braga VNL, Barreto FS, Aguiar GR, Pimentel KDG, Fechine FV, Dornelas CA. Red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. EINSTEIN-SAO PAULO 2019; 17:eAO4576. [PMID: 31066794 PMCID: PMC6497124 DOI: 10.31744/einstein_journal/2019ao4576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/03/2018] [Indexed: 11/07/2022] Open
Abstract
Objective: To evaluate the effect of red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. Methods: The study consisted of two experiments with four groups each (total: 57 hamsters). In the experiment 1, the animals were inoculated with Walker tumor cells, followed by administration of test substances (red propolis 200mg/5mL/kg or L-lysine 150mg/kg) or control substances (gum arabic 5mL/kg or water 5mL/kg) for 10 days. The animals in the experiment 2 received red propolis, L-lysine, gum arabic or water at the same doses, for 33 days prior to inoculation of Walker tumor cells, followed by 10 days of treatment with the same substances. Based on single-plane images, angiogenesis was quantified (mean vascular area), in percentage, and tumor area (mm2) and perimeter (mm). Results: In the experiment 1, compared to animals receiving water, the mean vascular area expressed in percentage was significantly smaller in animal treated with propolis (p<0.05) and L-lysine (p<0.001). Conclusion: Both red propolis and L-lysine inhibited tumor angiogenesis in the new hamster cheek pouch model when administered after tumor inoculation.
Collapse
|
15
|
Salehi M, Motallebnejad M, Moghadamnia AA, Seyemajidi M, Khanghah SN, Ebrahimpour A, Molania T. An Intervention Airing the Effect of Iranian Propolis on Epithelial Dysplasia of the Tongue: A Preliminary Study. J Clin Diagn Res 2017; 11:ZC67-ZC70. [PMID: 28893047 DOI: 10.7860/jcdr/2017/24887.10249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/09/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Since oral cancer is one of the causes of mortality, the use of materials or methods that can reduce cancer or prevent its progression has particular importance. AIM Aim of the study was to evaluate the antitumor effects of Iranian propolis on dysplastic changes of oral mucosa in rats. MATERIALS AND METHODS This study was performed on 28 Wistar male rats (aged 7-11 weeks, 160±20 g). They were divided into four groups of seven rats. The Group 1 received: 0.5% 7,12-Dimethylbenz[a]anthracene (DMBA), the Group 2: 0.5% DMBA and 100 mg/kg propolis, the Group 3: 0.5% DMBA and 200 mg/kg propolis, and the Group 4: 0.5% DMBA and 400 mg/kg propolis. DMBA in all groups was administered topically (brush) and propolis was injected intraperitoneally. DMBA was brushed twice on the lingual dorsum three times a week for 20 weeks. Propolis injection just every other day and in the days after DMBA was administered for 20 weeks. Rats were sacrificed, and histological examinations were performed on tongue specimen. RESULTS Propolis can reduce the degree of dysplasia in doses 100 mg/kg, 200 mg/kg, and 400 mg/kg compared to control (Group 1) (p=0.017, p=0.02, and p=0.002, respectively). CONCLUSION The results of this study showed propolis can dose-dependently prevent DMBA-induced dysplasia of the oral mucosa in animal model.
Collapse
Affiliation(s)
- Maedeh Salehi
- Assistant Professor, Department of Oral and Maxillofacial Medicine, Dental School, Mazandaran University, Sari, Iran
| | - Mina Motallebnejad
- Professor, Department of Oral and Maxillofacial, Dental Material Research Center, Dental School, Babol, Iran
| | - Ali Akbar Moghadamnia
- Professor, Department of Pharmacology, Medical School, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Seyemajidi
- Associate Professor, Department of Pathology, Dental School, Babol University of Medical Sciences, Babol, Iran
| | - Simin Noori Khanghah
- Assistant Professor, Department of Oral and Maxillofacial Medicine, Dental School, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Ebrahimpour
- Student, Department of Dentistry, School of Dentistry, Student Research Committee, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Tahereh Molania
- Assistant Professor, Department of Oral and Maxillofacial Medicine, Dental School, Mazandaran University, Sari, Iran
| |
Collapse
|
16
|
Rufatto LC, dos Santos DA, Marinho F, Henriques JAP, Roesch Ely M, Moura S. Red propolis: Chemical composition and pharmacological activity. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Frozza CODS, Santos DA, Rufatto LC, Minetto L, Scariot FJ, Echeverrigaray S, Pich CT, Moura S, Padilha FF, Borsuk S, Savegnago L, Collares T, Seixas FK, Dellagostin O, Roesch-Ely M, Henriques JAP. Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line. Biomed Pharmacother 2017; 91:951-963. [PMID: 28514834 DOI: 10.1016/j.biopha.2017.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Continuous increases in the rates of tumor diseases have highlighted the need for identification of novel and inexpensive antitumor agents from natural sources. In this study, we investigated the effects of enriched fraction from hydroalcoholic Brazilian red propolis extract against Hep-2 cancer cell line. Initially 201 fractions were arranged in 12 groups according to their chromatographic characteristics (A-L). After an in vitro cell viability screening, J and L were further selected as promising enriched fractions for this study. The chemical characterization was performed and Biochanin A, Formononetin, and Liquiritigenin compounds were quantified. Through MTT viability assay and morphological changes observed by Giemsa and DAPI staining, the results showed that red propolis inhibited cancer cells growth. Flow cytometry results indicated effects that were partly mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA cleaved assay, increase at SUB G1-G0 phase in cell cycle analysis and loss of mitochondrial membrane potential. In conclusion, our results demonstrated that red propolis enriched fractions promoted apoptotic effects in human cancer cells through the mechanisms involving mitochondrial perturbation. Therefore, red propolis fractions contain candidate agents for adjuvant cancer treatment, which further studies should elucidate the comprehensive mechanistic pathways.
Collapse
Affiliation(s)
| | - Denis Amilton Santos
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, RS, Brazil
| | - Luciane Corbellini Rufatto
- Laboratory of Natural and Synthetic Products, Biotechnology Institute, University of Caxias do Sul, RS, Brazil
| | - Luciane Minetto
- Laboratory of Natural and Synthetic Products, Biotechnology Institute, University of Caxias do Sul, RS, Brazil
| | - Fernando Joel Scariot
- Laboratory of Applied Microbiology, Biotechnology Institute, University of Caxias do Sul, RS, Brazil
| | - Sergio Echeverrigaray
- Laboratory of Applied Microbiology, Biotechnology Institute, University of Caxias do Sul, RS, Brazil; Cytogene Molecular Diagnostics Company, RS, Brazil
| | | | - Sidnei Moura
- Laboratory of Natural and Synthetic Products, Biotechnology Institute, University of Caxias do Sul, RS, Brazil
| | | | - Sibele Borsuk
- Biotechnology Unit, Center for Technology Development, Federal University of Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Biotechnology Unit, Center for Technology Development, Federal University of Pelotas, RS, Brazil
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kömmling Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Odir Dellagostin
- Biotechnology Unit, Center for Technology Development, Federal University of Pelotas, RS, Brazil
| | - Mariana Roesch-Ely
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, RS, Brazil
| | - João Antonio Pêgas Henriques
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, RS, Brazil.
| |
Collapse
|
18
|
Waller SB, Peter CM, Hoffmann JF, Picoli T, Osório LDG, Chaves F, Zani JL, de Faria RO, de Mello JRB, Meireles MCA. Chemical and cytotoxic analyses of brown Brazilian propolis (Apis mellifera) and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis. Microb Pathog 2017; 105:117-121. [PMID: 28219829 DOI: 10.1016/j.micpath.2017.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/19/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
This study aimed to evaluate the chemical composition and cytotoxic activity of brown Brazilian propolis and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis from animal sporotrichosis. Propolis was acquired commercially and prepared as a hydroalcoholic extract. Chemical analysis was evaluated by liquid chromatography coupled to mass spectrometry of ultra-efficiency. The cell viability was evaluated by MTT test in MDBK cells of 50 to 0.09 μg/mL. For antifungal tests, twenty isolates of Sporothrix brasiliensis from dogs (n = 11) and cats (n = 9) with sporotrichosis were tested to itraconazole (16-0.0313 μg/mL) and to propolis (3.125-0.09 mg/mL) by broth microdilution technique (CLSI M38-A2), adapted to natural products. The results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Itraconazole showed activity between MIC values of 0.25 to greater than 16 μg/mL, and 88.9% (08/09) and 72.7% (08/11) of S. brasiliensis from cats and dogs, respectively, were considered itraconazole-resistant. All Sporothrix brasiliensis were sensitive to brown propolis between MIC values of 0.19-1.56 mg/mL, including the itraconazole-resistant isolates, whereas the MFC values of propolis were from 0.78 to greater than 3.125 mg/mL. Propolis maintained a medium to high cell viability between concentration of 0.78 to 0.09 μg/mL, and p-coumaric acid was the major compound. Brown Brazilian propolis is a promising antifungal candidate against sporotrichosis and more studies need to be undertaken to evaluate its safe use to understand its efficacy.
Collapse
Affiliation(s)
- Stefanie B Waller
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Cristina M Peter
- Laboratório de Bacteriologia e Saúde Populacional, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Jéssica F Hoffmann
- Laboratório Cromatografia e Espectrometria de Massas, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tony Picoli
- Laboratório de Bacteriologia e Saúde Populacional, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luiza da G Osório
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fábio Chaves
- Laboratório Cromatografia e Espectrometria de Massas, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - João L Zani
- Laboratório de Bacteriologia e Saúde Populacional, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Renata O de Faria
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - João R B de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mário C A Meireles
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
19
|
Tiveron AP, Rosalen PL, Franchin M, Lacerda RCC, Bueno-Silva B, Benso B, Denny C, Ikegaki M, de Alencar SM. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS One 2016; 11:e0165588. [PMID: 27802316 PMCID: PMC5089781 DOI: 10.1371/journal.pone.0165588] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/16/2016] [Indexed: 11/28/2022] Open
Abstract
South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Ana Paula Tiveron
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Risia Cristina Coelho Lacerda
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Bruna Benso
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Carina Denny
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Masaharu Ikegaki
- School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, Centro, 37130-000, Alfenas, MG, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
- * E-mail:
| |
Collapse
|
20
|
Ethanol-Extracted Brazilian Propolis Exerts Protective Effects on Tumorigenesis in Wistar Hannover Rats. PLoS One 2016; 11:e0158654. [PMID: 27391589 PMCID: PMC4938237 DOI: 10.1371/journal.pone.0158654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022] Open
Abstract
The present study was conducted over a course of 104 weeks to estimate the carcinogenicity of ethanol-extracted Brazilian green propolis (EEP). Groups of 50 male and 50 female Wistar Hannover rats, 6-week-old at commencement were exposed to EEP at doses of 0, 0.5 or 2.5% in the diet. Survival rates of 0.5% and 2.5% EEP-treated male and female rats, respectively, were significantly higher than those of respective control groups. Overall histopathological evaluation of neoplasms in rat tissues after 2 years showed no significant increase of tumors or preneoplastic lesions in any organ of animals administered EEP. Significantly lower incidences of pituitary tumors in 0.5% EEP male and 2.5% EEP female groups, malignant lymphoma/leukemia in both 2.5% EEP-treated males and females and total thyroid tumors in 0.5% EEP male group were found. Administration of EEP caused significant decreases of lymphoid hyperplasia of the thymus and lymph nodes in 2.5% EEP-treated rats, tubular cell hyperplasia of kidneys in all EEP groups, and cortical hyperplasia of adrenals in EEP-treated females. In the blood, significant reduction of neutrophils in all EEP-treated males and band neutrophils in 2.5% EEP-treated females was found indicating lower levels of inflammation. Total cholesterol and triglicerides levels were significantly lower in the blood of 2.5% EEP-treated female rats. In conclusion, under the conditions of the 2-year feeding experiment, EEP was not carcinogenic, did not induce significant histopathological changes in any organ, and further exerted anti-inflammatory and antitumorigenic effects resulting in increase of survival of Wistar Hannover rats.
Collapse
|
21
|
Sforcin JM. Biological Properties and Therapeutic Applications of Propolis. Phytother Res 2016; 30:894-905. [DOI: 10.1002/ptr.5605] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 01/06/2023]
Affiliation(s)
- José M. Sforcin
- Department of Microbiology and Immunology; Institute of Biosciences of Botucatu, UNESP; 18618-970 Botucatu SP Brazil
| |
Collapse
|