1
|
Everaert K, Holm-Larsen T, Bou Kheir G, Rottey S, Weiss JP, Vande Walle J, Kabarriti AE, Dossche L, Hervé F, Spinoit AF, Nørgaard JP, Juul KV. Potential clinical applications of current and future oral forms of desmopressin (Review). Exp Ther Med 2024; 28:303. [PMID: 38873038 PMCID: PMC11170333 DOI: 10.3892/etm.2024.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 06/15/2024] Open
Abstract
Desmopressin is a synthetic analogue of vasopressin and a selective vasopressin receptor 2 agonist. It was first synthesised in 1967 and utilised for its antidiuretic properties. It is also used in bleeding disorders to enhance clotting. Other potential uses of the drug have been reported. The present review aims to provide a broad overview of the literature on potential further uses of oral forms of desmopressin. Key therapeutic areas of interest were identified based on known physiological activities/targets of desmopressin or reports of an effect of desmopressin in the literature. The feasibility of adequate dosing with oral forms of the drug was also considered. Systematic literature searches were carried out using the silvi.ai software for the identified areas, and summaries of available papers were included in tables and discussed. The results of the searches showed that desmopressin has been investigated for its efficacy in a number of areas, including bleeding control, renal colic, the central nervous system and oncology. Evidence suggests that oral desmopressin may have the potential to be of clinical benefit for renal colic and bleeding control in particular. However, further research is needed to clarify its effect in these areas, including randomised controlled studies and studies specifically of oral formulations (and doses). Further research may also yield findings for cancer, cognition and overactive bladder.
Collapse
Affiliation(s)
- Karel Everaert
- Faculty of Medicine and Health Sciences, Department of Human Structure and Repair, Ghent University Hospital, 9000 Ghent, Belgium
| | - Tove Holm-Larsen
- Faculty of Medicine and Health Sciences, Department of Human Structure and Repair, Ghent University Hospital, 9000 Ghent, Belgium
| | - George Bou Kheir
- Department of Urology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sylvie Rottey
- Drug Research Unit and Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jeffrey P. Weiss
- Department of Urology, State University of New York Downstate Health Sciences University, New York City, NY 11203, USA
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Abdo E. Kabarriti
- Department of Urology, State University of New York Downstate Health Sciences University, New York City, NY 11203, USA
| | - Lien Dossche
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium
| | - François Hervé
- Department of Urology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Anne-Françoise Spinoit
- Department of Pediatric & Reconstructive Urology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jens Peter Nørgaard
- Research & Development, Ferring Pharmaceuticals A/S, Ferring International PharmaScience Center, 2770 Copenhagen, Denmark
| | - Kristian Vinter Juul
- Research & Development, Ferring Pharmaceuticals A/S, Ferring International PharmaScience Center, 2770 Copenhagen, Denmark
| |
Collapse
|
2
|
Wang C, Lebedeva V, Yang J, Anih J, Park LJ, Paczkowski F, Roshanov PS. Desmopressin to reduce periprocedural bleeding and transfusion: a systematic review and meta-analysis. Perioper Med (Lond) 2024; 13:5. [PMID: 38263259 PMCID: PMC10804695 DOI: 10.1186/s13741-023-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
We systematically reviewed the literature to investigate the effects of peri-procedural desmopressin in patients without known inherited bleeding disorders undergoing surgery or other invasive procedures. We included 63 randomized trials (4163 participants) published up to February 1, 2023. Seven trials were published after a 2017 Cochrane systematic review on this topic. There were 38 trials in cardiac surgery, 22 in noncardiac surgery, and 3 in non-surgical procedures. Meta-analyses demonstrated that desmopressin likely does not reduce the risk of receiving a red blood cell transfusion (25 trials, risk ratio [RR] 0.95, 95% confidence interval [CI] 0.86 to 1.05) and may not reduce the risk of reoperation due to bleeding (22 trials, RR 0.75, 95% CI 0.47 to 1.19) when compared to placebo or usual care. However, we demonstrated significant reductions in number of units of red blood cells transfused (25 trials, mean difference -0.55 units, 95% CI - 0.94 to - 0.15), total volume of blood loss (33 trials, standardized mean difference - 0.40 standard deviations; 95% CI - 0.56 to - 0.23), and the risk of bleeding events (2 trials, RR 0.45, 95% CI 0.24 to 0.84). The certainty of evidence of these findings was generally low. Desmopressin increased the risk of clinically significant hypotension that required intervention (19 trials, RR 2.15, 95% CI 1.36 to 3.41). Limited evidence suggests that tranexamic acid is more effective than desmopressin in reducing transfusion risk (3 trials, RR 2.38 favoring tranexamic acid, 95% CI 1.06 to 5.39) and total volume of blood loss (3 trials, mean difference 391.7 mL favoring tranexamic acid, 95% CI - 93.3 to 876.7 mL). No trials directly informed the safety and hemostatic efficacy of desmopressin in advanced kidney disease. In conclusion, desmopressin likely reduces periprocedural blood loss and the number of units of blood transfused in small trials with methodologic limitations. However, the risk of hypotension needs to be mitigated. Large trials should evaluate desmopressin alongside tranexamic acid and enroll patients with advanced kidney disease.
Collapse
Affiliation(s)
- Carol Wang
- Department of Medicine, Western University, London, ON, Canada
| | | | - Jeffy Yang
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Lily J Park
- Department of Surgery, Division of General Surgery, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | - Freeman Paczkowski
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Pavel S Roshanov
- Department of Medicine, Western University, London, ON, Canada.
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.
- Population Health Research Institute, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Kietaibl S, Ahmed A, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, De Robertis E, Faraoni D, Filipescu DC, Fries D, Godier A, Haas T, Jacob M, Lancé MD, Llau JV, Meier J, Molnar Z, Mora L, Rahe-Meyer N, Samama CM, Scarlatescu E, Schlimp C, Wikkelsø AJ, Zacharowski K. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur J Anaesthesiol 2023; 40:226-304. [PMID: 36855941 DOI: 10.1097/eja.0000000000001803] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Management of peri-operative bleeding is complex and involves multiple assessment tools and strategies to ensure optimal patient care with the goal of reducing morbidity and mortality. These updated guidelines from the European Society of Anaesthesiology and Intensive Care (ESAIC) aim to provide an evidence-based set of recommendations for healthcare professionals to help ensure improved clinical management. DESIGN A systematic literature search from 2015 to 2021 of several electronic databases was performed without language restrictions. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used to assess the methodological quality of the included studies and to formulate recommendations. A Delphi methodology was used to prepare a clinical practice guideline. RESULTS These searches identified 137 999 articles. All articles were assessed, and the existing 2017 guidelines were revised to incorporate new evidence. Sixteen recommendations derived from the systematic literature search, and four clinical guidances retained from previous ESAIC guidelines were formulated. Using the Delphi process on 253 sentences of guidance, strong consensus (>90% agreement) was achieved in 97% and consensus (75 to 90% agreement) in 3%. DISCUSSION Peri-operative bleeding management encompasses the patient's journey from the pre-operative state through the postoperative period. Along this journey, many features of the patient's pre-operative coagulation status, underlying comorbidities, general health and the procedures that they are undergoing need to be taken into account. Due to the many important aspects in peri-operative nontrauma bleeding management, guidance as to how best approach and treat each individual patient are key. Understanding which therapeutic approaches are most valuable at each timepoint can only enhance patient care, ensuring the best outcomes by reducing blood loss and, therefore, overall morbidity and mortality. CONCLUSION All healthcare professionals involved in the management of patients at risk for surgical bleeding should be aware of the current therapeutic options and approaches that are available to them. These guidelines aim to provide specific guidance for bleeding management in a variety of clinical situations.
Collapse
Affiliation(s)
- Sibylle Kietaibl
- From the Department of Anaesthesiology & Intensive Care, Evangelical Hospital Vienna and Sigmund Freud Private University Vienna, Austria (SK), Department of Anaesthesia and Critical Care, University Hospitals of Leicester NHS Trust (AAh), Department of Cardiovascular Sciences, University of Leicester, UK (AAh), Department of Paediatric and Obstetric Anaesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark (AAf), Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark (AAf), Department of Anaesthesiology & Critical Care, CNRS/TIMC-IMAG UMR 5525/Themas, Grenoble-Alpes University Hospital, Grenoble, France (PA), Department of Anaesthesiology & Intensive Care, Hospital Universitario Rio Hortega, Valladolid, Spain (CA), Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania (GB), Division of Anaesthesia, Analgesia, and Intensive Care - Department of Medicine and Surgery, University of Perugia, Italy (EDR), Department of Anesthesiology, Perioperative and Pain Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA (DFa), University of Medicine and Pharmacy Carol Davila, Department of Anaesthesiology & Intensive Care, Emergency Institute for Cardiovascular Disease, Bucharest, Romania (DCF), Department of Anaesthesia and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria (DFr), Department of Anaesthesiology & Critical Care, APHP, Université Paris Cité, Paris, France (AG), Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida, USA (TH), Department of Anaesthesiology, Intensive Care and Pain Medicine, St.-Elisabeth-Hospital Straubing, Straubing, Germany (MJ), Department of Anaesthesiology, Medical College East Africa, The Aga Khan University, Nairobi, Kenya (MDL), Department of Anaesthesiology & Post-Surgical Intensive Care, University Hospital Doctor Peset, Valencia, Spain (JVL), Department of Anaesthesiology & Intensive Care, Johannes Kepler University, Linz, Austria (JM), Department of Anesthesiology & Intensive Care, Semmelweis University, Budapest, Hungary (ZM), Department of Anaesthesiology & Post-Surgical Intensive Care, University Trauma Hospital Vall d'Hebron, Barcelona, Spain (LM), Department of Anaesthesiology & Intensive Care, Franziskus Hospital, Bielefeld, Germany (NRM), Department of Anaesthesia, Intensive Care and Perioperative Medicine, GHU AP-HP. Centre - Université Paris Cité - Cochin Hospital, Paris, France (CMS), Department of Anaesthesiology and Intensive Care, Fundeni Clinical Institute, Bucharest and University of Medicine and Pharmacy Carol Davila, Bucharest, Romania (ES), Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Centre Linz and Ludwig Boltzmann-Institute for Traumatology, The Research Centre in Co-operation with AUVA, Vienna, Austria (CS), Department of Anaesthesia and Intensive Care Medicine, Zealand University Hospital, Roskilde, Denmark (AW) and Department of Anaesthesiology, Intensive Care Medicine & Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany (KZ)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jahangirifard A, Mirtajani SB, Madadi F. Effect of Desmopressin on Bleeding After Heart Surgeries: A Narrative Review. Anesth Pain Med 2023; 13:e133894. [PMID: 37645010 PMCID: PMC10461384 DOI: 10.5812/aapm-133894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 08/31/2023] Open
Abstract
Desmopressin is an analog of the antidiuretic hormone (vasopressin), which causes anticoagulant activity by increasing plasma factor 8. The use of desmopressin dates back to 1977, when this hormone was used to prevent bleeding during tooth extraction and surgery in patients with hemophilia A and von Willebrand disease. After that, this hormone was expanded to prevent bleeding in congenital defects and conditions such as chronic kidney and liver failure. Also, this hormone is used to prevent bleeding in major surgeries such as heart surgery, where the patient loses much blood and needs a blood transfusion. Considering the importance of desmopressin in bleeding control, the present study was conducted to investigate the possible effect of this hormone in heart surgery.
Collapse
Affiliation(s)
- Alireza Jahangirifard
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Bashir Mirtajani
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Madadi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hughes C, Sterling B, Andrews J. Successful Orthotopic Heart Transplantation in Patient With Anti-U Antibody. Lab Med 2021; 53:e77-e78. [PMID: 34725705 DOI: 10.1093/labmed/lmab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The U (universal) antigen is part of the MNS blood group present at a frequency of nearly 100% in Caucasians and 98% of African Americans. The anti-U antibody is clinically significant and has been reported to cause hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. METHODS Routine forward and backward typing, direct antiglobulin testing, and an antibody screen were performed. In addition, red blood cell phenotype and adsorption studies were also performed. RESULTS The patient was found to have a rare anti-U antibody, rendering all available inventory in our hospital incompatible for transfusion. CONCLUSION This is the first reported case of solid organ transplantation in a patient with an anti-U alloantibody. Appropriate pretransplant evaluation and coordination between the clinical team and transfusion medicine service must be optimized to procure rare packed red blood cell units in a timely manner.
Collapse
Affiliation(s)
- Caitlin Hughes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - Brent Sterling
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - Jennifer Andrews
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| |
Collapse
|
6
|
Wang LC, Hu YF, Chen L, Xing R, Lin XF, Kou QY. Desmopressin acetate decreases blood loss in patients with massive hemorrhage undergoing gastrointestinal surgery. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:474-481. [PMID: 32721919 DOI: 10.5152/tjg.2020.19021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND/AIMS Intraoperative blood loss more than 400 mL during gastrointestinal surgery is an independent predictor of mortality. Desmopressin acetate (DDAVP) could reduce perioperative blood loss. Few studies have prompted concerning the effects of DDAVP on gastrointestinal surgery. This study was to investigate whether DDAVP can decrease blood loss in patients with massive hemorrhage undergoing gastrointestinal surgery. MATERIALS AND METHODS A multiple-centers, double-blind clinical trial was conducted, patients who underwent gastrointestinal surgery were recruited from 3 hospitals, randomly assigned to two different groups. Patients in the treatment group received desmopressin 0.3 ug/kg,30 min once a day after surgery, patients in the control group received 50 ml saline for 30 min. The primary outcome was the changes of hemoglobin at 24 hours after the surgery. And the secondary outcomes included coagulation function, urine volume, serum creatinine, and safety. RESULTS There were 59 patients enrolled between 1 June 2015 and 1 June 2017. At 24hr.after surgery, a decrease in hemoglobin in the DDAVP group was significantly lower than that in the NS group (-5.0±6.9 g/L vs. -10.2±9.3g/L, p=0.03). Sonoclot® showed that the platelet function in the DDAVP group was higher than that in NS group at 24 hr. (2.56 ±0.59 vs. 1.91 ±0.72, p<0.05). There was no difference in urine volume and serum creatinine at 24 hr. between two group. CONCLUSION DDAVP could reduce post-operation blood loss in patients with massive hemorrhage undergoing surgery by improving the platelet function. We observed no difference in urine volume and serum creatinine in two groups.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Intensive Care Unit, the Sixth Affiliated Hospital of Sun Yat-Sen University,Guangzhou, China
| | - Ying-Fang Hu
- Department of Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Chen
- Department of Intensive Care Unit, the Sixth Affiliated Hospital of Sun Yat-Sen University,Guangzhou, China
| | - Rui Xing
- Department of Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xin-Feng Lin
- Department of Intensive Care Unit, The fist affiliated hospital of Guangzhou university of Chinese medicine, Guangzhou, China
| | - Qiu-Ye Kou
- Department of Intensive Care Unit, the Sixth Affiliated Hospital of Sun Yat-Sen University,Guangzhou, China
| |
Collapse
|
7
|
Hawkins WA, Smith SE, Newsome AS, Carr JR, Bland CM, Branan TN. Fluid Stewardship During Critical Illness: A Call to Action. J Pharm Pract 2019; 33:863-873. [PMID: 31256705 PMCID: PMC7675763 DOI: 10.1177/0897190019853979] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intravenous fluids (IVFs) are the most common drugs administered in the intensive care unit. Despite the ubiquitous use, IVFs are not benign and carry significant risks associated with under- or overadministration. Hypovolemia is associated with decreased organ perfusion, ischemia, and multi-organ failure. Hypervolemia and volume overload are associated with organ dysfunction, delayed liberation from mechanical ventilation, and increased mortality. Despite appropriate provision of IVF, adverse drug effects such as electrolyte abnormalities and acid-base disturbances may occur. The management of volume status in critically ill patients is both dynamic and tenuous, a process that requires frequent monitoring and high clinical acumen. Because patient-specific considerations for fluid therapy evolve across the continuum of critical illness, a standard approach to the assessment of fluid needs and prescription of IVF therapy is necessary. We propose the principle of "fluid stewardship," guided by 4 rights of medication safety: right patient, right drug, right route, and right dose. The successful implementation of fluid stewardship will aid pharmacists in making decisions regarding IVF therapy to optimize hemodynamic management and improve patient outcomes. Additionally, we highlight several areas of focus for future research, guided by the 4 rights construct of fluid stewardship.
Collapse
Affiliation(s)
- W Anthony Hawkins
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Albany, GA, USA
| | - Susan E Smith
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA
| | - Andrea Sikora Newsome
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA, USA.,Department of Pharmacy, Augusta University Medical Center, Augusta, GA, USA
| | - John R Carr
- Department of Pharmacy, St Joseph's/Candler Health System, Savannah, GA, USA
| | - Christopher M Bland
- Department of Pharmacy, St Joseph's/Candler Health System, Savannah, GA, USA.,Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Savannah, GA, USA
| | - Trisha N Branan
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA
| |
Collapse
|
8
|
Del Rio JM, Maerz D, Subramaniam K. Noteworthy Literature Published in 2017 for Thoracic Transplantation Anesthesiologists. Semin Cardiothorac Vasc Anesth 2018; 22:49-66. [DOI: 10.1177/1089253217749893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thoracic organ transplantation constitutes a significant proportion of all transplant procedures. Thoracic solid organ transplantation continues to be a burgeoning field of research. This article presents a review of remarkable literature published in 2017 regarding perioperative issues pertinent to the thoracic transplant anesthesiologists.
Collapse
Affiliation(s)
- J. Mauricio Del Rio
- Duke University, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - David Maerz
- University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kathirvel Subramaniam
- University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Desborough MJ, Oakland K, Brierley C, Bennett S, Doree C, Trivella M, Hopewell S, Stanworth SJ, Estcourt LJ. Desmopressin use for minimising perioperative blood transfusion. Cochrane Database Syst Rev 2017; 7:CD001884. [PMID: 28691229 PMCID: PMC5546394 DOI: 10.1002/14651858.cd001884.pub3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood transfusion is administered during many types of surgery, but its efficacy and safety are increasingly questioned. Evaluation of the efficacy of agents, such as desmopressin (DDAVP; 1-deamino-8-D-arginine-vasopressin), that may reduce perioperative blood loss is needed. OBJECTIVES To examine the evidence for the efficacy of DDAVP in reducing perioperative blood loss and the need for red cell transfusion in people who do not have inherited bleeding disorders. SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (2017, issue 3) in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (from 1937), the Transfusion Evidence Library (from 1980), and ongoing trial databases (all searches to 3 April 2017). SELECTION CRITERIA We included randomised controlled trials comparing DDAVP to placebo or an active comparator (e.g. tranexamic acid, aprotinin) before, during, or immediately after surgery or after invasive procedures in adults or children. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS We identified 65 completed trials (3874 participants) and four ongoing trials. Of the 65 completed trials, 39 focused on adult cardiac surgery, three on paediatric cardiac surgery, 12 on orthopaedic surgery, two on plastic surgery, and two on vascular surgery; seven studies were conducted in surgery for other conditions. These trials were conducted between 1986 and 2016, and 11 were funded by pharmaceutical companies or by a party with a commercial interest in the outcome of the trial.The GRADE quality of evidence was very low to moderate across all outcomes. No trial reported quality of life. DDAVP versus placebo or no treatmentTrial results showed considerable heterogeneity between surgical settings for total volume of red cells transfused (low-quality evidence) and for total blood loss (very low-quality evidence) due to large differences in baseline blood loss. Consequently, these outcomes were not pooled and were reported in subgroups.Compared with placebo, DDAVP may slightly decrease the total volume of red cells transfused in adult cardiac surgery (mean difference (MD) -0.52 units, 95% confidence interval (CI) -0.96 to -0.08 units; 14 trials, 957 participants), but may lead to little or no difference in orthopaedic surgery (MD -0.02, 95% CI -0.67 to 0.64 units; 6 trials, 303 participants), vascular surgery (MD 0.06, 95% CI -0.60 to 0.73 units; 2 trials, 135 participants), or hepatic surgery (MD -0.47, 95% CI -1.27 to 0.33 units; 1 trial, 59 participants).DDAVP probably leads to little or no difference in the total number of participants transfused with blood (risk ratio (RR) 0.96, 95% CI 0.86 to 1.06; 25 trials; 1806 participants) (moderate-quality evidence).Whether DDAVP decreases total blood loss in adult cardiac surgery (MD -135.24 mL, 95% CI -210.80 mL to -59.68 mL; 22 trials, 1358 participants), orthopaedic surgery (MD -285.76 mL, 95% CI -514.99 mL to -56.53 mL; 5 trials, 241 participants), or vascular surgery (MD -582.00 mL, 95% CI -1264.07 mL to 100.07 mL; 1 trial, 44 participants) is uncertain because the quality of evidence is very low.DDAVP probably leads to little or no difference in all-cause mortality (Peto odds ratio (pOR) 1.09, 95% CI 0.51 to 2.34; 22 trials, 1631 participants) or in thrombotic events (pOR 1.36, 95% CI, 0.85 to 2.16; 29 trials, 1984 participants) (both low-quality evidence). DDAVP versus placebo or no treatment for people with platelet dysfunctionCompared with placebo, DDAVP may lead to a reduction in the total volume of red cells transfused (MD -0.65 units, 95% CI -1.16 to -0.13 units; 6 trials, 388 participants) (low-quality evidence) and in total blood loss (MD -253.93 mL, 95% CI -408.01 mL to -99.85 mL; 7 trials, 422 participants) (low-quality evidence).DDAVP probably leads to little or no difference in the total number of participants receiving a red cell transfusion (RR 0.83, 95% CI 0.66 to 1.04; 5 trials, 258 participants) (moderate-quality evidence).Whether DDAVP leads to a difference in all-cause mortality (pOR 0.72, 95% CI 0.12 to 4.22; 7 trials; 422 participants) or in thrombotic events (pOR 1.58, 95% CI 0.60 to 4.17; 7 trials, 422 participants) is uncertain because the quality of evidence is very low. DDAVP versus tranexamic acidCompared with tranexamic acid, DDAVP may increase the volume of blood transfused (MD 0.6 units, 95% CI 0.09 to 1.11 units; 1 trial, 40 participants) and total blood loss (MD 142.81 mL, 95% CI 79.78 mL to 205.84 mL; 2 trials, 115 participants) (both low-quality evidence).Whether DDAVP increases or decreases the total number of participants transfused with blood is uncertain because the quality of evidence is very low (RR 2.42, 95% CI 1.04 to 5.64; 3 trials, 135 participants).No trial reported all-cause mortality.Whether DDAVP leads to a difference in thrombotic events is uncertain because the quality of evidence is very low (pOR 2.92, 95% CI 0.32 to 26.83; 2 trials, 115 participants). DDAVP versus aprotininCompared with aprotinin, DDAVP probably increases the total number of participants transfused with blood (RR 2.41, 95% CI 1.45 to 4.02; 1 trial, 99 participants) (moderate-quality evidence).No trials reported volume of blood transfused or total blood loss and the single trial that included mortality as an outcome reported no deaths.Whether DDAVP leads to a difference in thrombotic events is uncertain because the quality of evidence is very low (pOR 0.98, 95% CI 0.06 to 15.89; 2 trials, 152 participants). AUTHORS' CONCLUSIONS Most of the evidence derived by comparing DDAVP versus placebo was obtained in cardiac surgery, where DDAVP was administered after cardiopulmonary bypass. In adults undergoing cardiac surgery, the reduction in volume of red cells transfused and total blood loss was small and was unlikely to be clinically important. It is less clear whether DDAVP may be of benefit for children and for those undergoing non-cardiac surgery. A key area for researchers is examining the effects of DDAVP for people with platelet dysfunction. Few trials have compared DDAVP versus tranexamic acid or aprotinin; consequently, we are uncertain of the relative efficacy of these interventions.
Collapse
Affiliation(s)
| | - Kathryn Oakland
- NHS Blood and TransplantHaematology/Transfusion MedicineOxfordUK
| | - Charlotte Brierley
- John Radcliffe HospitalDepartment of HaematologyHeadley WayOxfordUKOX3 9DU
| | - Sean Bennett
- University of OttawaDepartment of Surgery501 Smyth RoadOttawaOntarioCanadaK1M 1R4
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Sally Hopewell
- University of OxfordOxford Clinical Trials Research UnitNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesWindmill RoadOxfordOxfordshireUKOX3 7LD
| | - Simon J Stanworth
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNational Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe Hospital, Headley WayHeadingtonOxfordUKOX3 9BQ
| | - Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineOxfordUK
| | | |
Collapse
|