1
|
Mezeiova E, Soukup O, Korabecny J. Huprines — an insight into the synthesis and biological properties. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Relat J, Come J, Perez B, Camps P, Muñoz-Torrero D, Badia A, Gimenez-Llort L, Clos MV. Neuroprotective Effects of the Multitarget Agent AVCRI104P3 in Brain of Middle-Aged Mice. Int J Mol Sci 2018; 19:ijms19092615. [PMID: 30181440 PMCID: PMC6165152 DOI: 10.3390/ijms19092615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022] Open
Abstract
Molecular factors involved in neuroprotection are key in the design of novel multitarget drugs in aging and neurodegeneration. AVCRI104P3 is a huprine derivative that exhibits potent inhibitory effects on human AChE, BuChE, and BACE-1 activities, as well as on AChE-induced and self-induced Aβ aggregation. More recently, cognitive protection and anxiolytic-like effects have also been reported in mice treated with this compound. Now, we have assessed the ability of AVCRI104P3 (0.43 mg/kg, 21 days) to modulate the levels of some proteins involved in the anti-apoptotic/apoptotic processes (pAkt1, Bcl2, pGSK3β, p25/p35), inflammation (GFAP and Iba1) and neurogenesis in C57BL/6 mice. The effects of AVCRI104P3 on AChE-R/AChE-S isoforms have been also determined. We have observed that chronic treatment of C57BL/6 male mice with AVCRI104P3 results in neuroprotective effects, increasing significantly the levels of pAkt1 and pGSK3β in the hippocampus and Bcl2 in both hippocampus and cortex, but slightly decreasing synaptophysin levels. Astrogliosis and neurogenic markers GFAP and DCX remained unchanged after AVCRI104P3 treatment, whereas microgliosis was found to be significantly decreased pointing out the involvement of this compound in inflammatory processes. These results suggest that the neuroprotective mechanisms that are behind the cognitive and anxiolytic effects of AVCRI104P3 could be partly related to the potentiation of some anti-apoptotic and anti-inflammatory proteins and support the potential of AVCRI104P3 for the treatment of brain dysfunction associated with aging and/or dementia.
Collapse
Affiliation(s)
- Julia Relat
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain.
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Julio Come
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain.
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Belen Perez
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain.
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Pelayo Camps
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain.
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain.
| | - Albert Badia
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain.
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - Lydia Gimenez-Llort
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain.
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| | - M Victòria Clos
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain.
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|