1
|
Luebke L, Lopes CG, Myka Y, Lumma A, Adamczyk WM, Carvalho GF, Scholten-Peeters GGM, Luedtke K, Szikszay TM. Assessing the Influence of Nonischemic A-Fiber Conduction Blockade on Offset Analgesia: An Experimental Study. THE JOURNAL OF PAIN 2024; 25:104611. [PMID: 38908497 DOI: 10.1016/j.jpain.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Offset analgesia (OA) is believed to reflect the efficiency of the endogenous pain modulatory system. However, the underlying mechanisms are still being debated. Previous research suggested both, central and peripheral mechanisms, with the latter involving the influence of specific A-delta-fibers. Therefore, this study aimed to investigate the influence of a nonischemic A-fiber conduction blockade on the OA response in healthy participants. A total of 52 participants were recruited for an A-fiber conduction blockade via compression of the superficial radial nerve. To monitor fiber-specific peripheral nerve conduction capacity, quantitative sensory testing was performed continuously. Before, during, and after the A-fiber block, an individualized OA paradigm was applied to the dorsum of both hands (blocked and control sides were randomized). The pain intensity of each heat stimulus was evaluated by an electronic visual analog scale. A successful A-fiber conduction blockade was achieved in thirty participants. OA has been verified within time (before, during, and after blockade) and condition (blocked and control side) (P < .01, d > .5). Repeated measurements analysis of variance showed no significant interaction effects between OA within condition and time (P = .24, η²p = .05). Hence, no significant effect of A-fiber blockade was detected on OA during noxious heat stimulation. The results suggest that peripheral A-fiber afferents may play a minor role in OA compared with alternative central mechanisms or other fibers. However, further studies are needed to substantiate a central rather than peripheral influence on OA. PERSPECTIVE: This article presents the observation of OA before, during, and after a successful A-fiber conduction blockade in healthy volunteers. A better understanding of the mechanisms of OA and endogenous pain modulation, in general, may help to explain the underlying aspects of pain disorders.
Collapse
Affiliation(s)
- Luisa Luebke
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany.
| | - Clara Gieseke Lopes
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Program Musculoskeletal Health, Amsterdam, The Netherlands
| | - Yasmin Myka
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany
| | - Annika Lumma
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany
| | - Wacław M Adamczyk
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany; Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Gabriela F Carvalho
- Department of Physiotherapy, Faculty of Health, Safety and Society, Furtwangen University, Furtwangen, Germany
| | - Gwendolyne G M Scholten-Peeters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Program Musculoskeletal Health, Amsterdam, The Netherlands
| | - Kerstin Luedtke
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany
| | - Tibor M Szikszay
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany
| |
Collapse
|
2
|
Luebke L, von Selle J, Adamczyk WM, Knorr MJ, Carvalho GF, Gouverneur P, Luedtke K, Szikszay TM. Differential Effects of Thermal Stimuli in Eliciting Temporal Contrast Enhancement: A Psychophysical Study. THE JOURNAL OF PAIN 2024; 25:228-237. [PMID: 37591481 DOI: 10.1016/j.jpain.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Offset analgesia (OA) is observed when pain relief is disproportional to the reduction of noxious input and is based on temporal contrast enhancement (TCE). This phenomenon is believed to reflect the function of the inhibitory pain modulatory system. However, the mechanisms contributing to this phenomenon remain poorly understood, with previous research focusing primarily on painful stimuli and not generalizing to nonpainful stimuli. Therefore, the aim of this study was to investigate whether TCE can be induced by noxious as well as innocuous heat and cold stimuli. Asymptomatic subjects (n = 50) were recruited to participate in 2 consecutive experiments. In the first pilot study (n = 17), the parameters of noxious and innocuous heat and cold stimuli were investigated in order to implement them in the main study. In the second (main) experiment, subjects (n = 33) participated in TCE paradigms consisting of 4 different modalities, including noxious heat (NH), innocuous heat (IH), noxious cold (NC), and innocuous cold (IC). The intensity of the sensations of each thermal modality was assessed using an electronic visual analog scale. TCE was confirmed for NH (P < .001), NC (P = .034), and IC (P = .002). Conversely, TCE could not be shown for IH (P = 1.00). No significant correlation between TCE modalities was found (r < .3, P > .05). The results suggest that TCE can be induced by both painful and nonpainful thermal stimulation but not by innocuous warm temperature. The exact underlying mechanisms need to be clarified. However, among other potential mechanisms, this may be explained by a thermo-specific activation of C-fiber afferents by IH and of A-fiber afferents by IC, suggesting the involvement of A-fibers rather than C-fibers in TCE. More research is needed to confirm a peripheral influence. PERSPECTIVE: This psychophysical study presents the observation of temporal contrast enhancement during NH, NC, and innocuous cold stimuli but not during stimulation with innocuous warm temperatures in healthy volunteers. A better understanding of endogenous pain modulation mechanisms might be helpful in explaining the underlying aspects of pain disorders.
Collapse
Affiliation(s)
- Luisa Luebke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Janne von Selle
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Wacław M Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Schlesien, Poland; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Moritz J Knorr
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Gabriela F Carvalho
- Department of Physiotherapy, Faculty of Health, Safety and Society, Furtwangen University, Furtwangen, Germany
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| |
Collapse
|
3
|
Higa S, Oba M, Saito S, Itoh K. Effect of Catastrophic Thinking on the Analgesic Effect of Electroacupuncture. Med Acupunct 2023; 35:311-318. [PMID: 38162552 PMCID: PMC10753907 DOI: 10.1089/acu.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Introduction Patients with chronic pain and high-level catastrophic thoughts often do not respond to acupuncture. This may be related to hypofunctioning of the dorsolateral prefrontal cortex and the descending pain inhibitory system. Therefore, we examined the relationship between the level of catastrophic thinking and the analgesic effect of electroacupuncture using the pain catastrophizing scale (PCS). We also evaluated the descending pain inhibitory system using conditioned pain modulation (CPM) and offset analgesia (OA). The relationship between catastrophic thinking and the descending pain inhibitory system was also examined. Materials and Methods After testing the hospital anxiety and depression scale and the PCS in 14 healthy adults, the current pain threshold (CPT), CPM, and OA were measured, in order, before the intervention. Thereafter, electroacupuncture was applied to 3 limbs (the dominant hand and both lower extremities) at 4 Hz, and to the scalp at 100 Hz, for 30 minutes, and the CPT was measured again immediately after the intervention. The difference in the CPT before and after the intervention was taken as the analgesic effect. Results The participants were divided into 2 groups, the H-PCS group (≥16 points) and the L-PCS group (≤15 points), according to the PCS score, and the analgesic effects of electroacupuncture were significantly different (P = 0.04). However, no relationship was found between the PCS score and the CPM (r = -0.02, P = 0.94) and OA effects (r = -0.19, P = 0.49). Conclusion It was suggested that people with high-level catastrophic thinking may find it difficult to obtain the analgesic effects of electroacupuncture.
Collapse
Affiliation(s)
- Shohei Higa
- Graduate School, Meiji University of Integrative Medicine, Nantan, Japan
| | - Miho Oba
- Graduate School, Meiji University of Integrative Medicine, Nantan, Japan
| | - Shingo Saito
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan, Japan
| | - Kazunori Itoh
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan, Japan
| |
Collapse
|
4
|
Larsen DB, Uth XJ, Arendt-Nielsen L, Petersen KK. Modulation of offset analgesia in patients with chronic pain and healthy subjects - a systematic review and meta-analysis. Scand J Pain 2022; 22:14-25. [PMID: 34644466 DOI: 10.1515/sjpain-2021-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Offset analgesia (OA) induces a brief pain inhibition and studies suggest OA impairment in patients with chronic pain when compared to healthy subjects. Conditioned pain modulation remains the most studied descending pain inhibitory control mechanism and is modulated by centrally-acting analgesics. Since OA may be mediated by similar neural substrates as conditioned pain modulation, understanding if OA is a peripheral or central proxy of pain modulation is important. The modulatory effect of centrally-acting drugs on OA in healthy and chronic pain populations has not yet been systematically reviewed and meta-analyzed, and this systematic review and meta-analysis aimed to identify studies employing interventions for modulating OA magnitude. METHODS A systematic search of PubMed, Embase, Web of Science, and the Cochrane Library yielded 146 records of which 11 (172 healthy pain-free subjects, 106 chronic pain patients) were eligible for qualitative synthesis, and 10 for meta-analysis on overall modulatory effect of interventions on OA, and subgroup analysis of patients and healthy pain-free subjects. RESULTS Risk of bias was evident for study participation and study confounding in the included studies. Several different methods for assessing and calculating OA magnitude were identified, which may affect interpretability of findings and warrants standardization. The meta-analysis showed no modulatory effects on OA overall (standardized mean difference (SMD) [95%CI]: 0.04 [-0.22, 0.30], Z=0.29, p=0.77), or in the subgroup analysis for patients (SMD [95%CI]: -0.04 [-0.63, 0.71], Z=0.13, p=0.90) or healthy pain-free subjects (SMD [95%CI]: 0.01 [-0.21, 0.24], Z=0.11, p=0.91). Moderate to substantial heterogeneity was found for the overall analysis (I2=47%, p=0.03) and patient subgroup analysis (I2=75%, p=0.003). CONCLUSIONS The current systematic review and meta-analysis conclude that centrally-acting drugs and exercise do not influence OA. Evidence on the peripheral contribution to OA response requires further investigations. Preclinical models of OA should be established to identify the neurophysiology and -biology behind OA.
Collapse
Affiliation(s)
- Dennis Boye Larsen
- Department of Health Science and Technology, Centre for Neuroplasticity and Pain, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Xenia Jørgensen Uth
- Department of Health Science and Technology, Centre for Neuroplasticity and Pain, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Centre for Neuroplasticity and Pain, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Department of Health Science and Technology, Centre for Neuroplasticity and Pain, School of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Szikszay TM, Lévénez JLM, von Selle J, Adamczyk WM, Luedtke K. Investigation of Correlations Between Pain Modulation Paradigms. PAIN MEDICINE 2021; 22:2028-2036. [PMID: 33587117 DOI: 10.1093/pm/pnab067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Endogenous pain modulation can be quantified through the use of various paradigms. Commonly used paradigms include conditioned pain modulation (CPM), offset analgesia (OA), spatial summation of pain (SSP), and temporal summation of pain (TSP), which reflect spatial and temporal aspects of pro- and antinociceptive processing. Although these paradigms are regularly used and are of high clinical relevance, the underlying physiological mechanisms are not fully understood. DESIGN The aim of this study is therefore to assess the association between these paradigms by using comparable protocols and methodological approaches. SETTING University campus. SUBJECTS Healthy and pain-free volunteers (n = 48) underwent psychophysical assessment of CPM, OA, SSP, and TSP (random order) at the same body area (volar nondominant forearm) with individualized noxious stimuli. METHODS CPM included heat stimuli before, during, and after a noxious cold-water bath, whereas for OA, three heat stimuli were applied: baseline trial, offset trial, and constant trial. For the SSP paradigm, two differently sized heat stimulation areas were evaluated, whereas for TSP, the first and last stimulus of 10 consecutive short heat stimuli were assessed. A computerized visual analog scale was used to continuously evaluate pain intensity. The magnitudes of all associations between all paradigm pairs were analyzed with Spearman's correlation, and individual influencing factors were assessed with a multivariate linear regression model. RESULTS Weak to moderate correlations among all four paradigms were found (P > 0.05), and no distinct influencing factors were identified. CONCLUSIONS A limited association between pain modulation paradigms suggests that CPM, OA, SSP, and TSP assess distinct aspects of endogenous analgesia with different underlying physiological mechanisms.
Collapse
Affiliation(s)
- Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Luebeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Luebeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Juliette L M Lévénez
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Luebeck, Germany
| | - Janne von Selle
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Luebeck, Germany
| | - Waclaw M Adamczyk
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Luebeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Luebeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Luebeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Luebeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
6
|
Lelic D, Olesen AE, Grønlund D, Jure FA, Drewes AM. Opioid Specific Effects on Central Processing of Sensation and Pain: A Randomized, Cross-Over, Placebo-Controlled Study. THE JOURNAL OF PAIN 2021; 22:1477-1496. [PMID: 34229074 DOI: 10.1016/j.jpain.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Moderate to severe pain is often treated with opioids, but central mechanisms underlying opioid analgesia are poorly understood. Findings thus far have been contradictory and none could infer opioid specific effects. This placebo-controlled, randomized, 2-way cross-over, double-blinded study aimed to explore opioid specific effects on central processing of external stimuli. Twenty healthy male volunteers were included and 3 sets of assessments were done at each of the 2 visits: 1) baseline, 2) during continuous morphine or placebo intravenous infusion and 3) during simultaneous morphine + naloxone or placebo infusion. Opioid antagonist naloxone was introduced in order to investigate opioid specific effects by observing which morphine effects are reversed by this intervention. Quantitative sensory testing, spinal nociceptive withdrawal reflexes (NWR), spinal electroencephalography (EEG), cortical EEG responses to external stimuli and resting EEG were measured and analyzed. Longer lasting pain (cold-pressor test - hand in 2° water for 2 minutes, tetanic electrical), deeper structure pain (bone pressure) and strong nociceptive (NWR) stimulations were the most sensitive quantitative sensory testing measures of opioid analgesia. In line with this, the principal opioid specific central changes were seen in NWRs, EEG responses to NWRs and cold-pressor EEG. The magnitude of NWRs together with amplitudes and insular source strengths of the corresponding EEG responses were attenuated. The decreases in EEG activity were correlated to subjective unpleasantness scores. Brain activity underlying slow cold-pressor EEG (1-4Hz) was decreased, whereas the brain activity underlying faster EEG (8-12Hz) was increased. These changes were strongly correlated to subjective pain relief. This study points to evidence of opioid specific effects on perception of external stimuli and the underlying central responses. The analgesic response to opioids is likely a synergy of opioids acting at both spinal and supra-spinal levels of the central nervous system. Due to the strong correlations with pain relief, the changes in EEG signals during cold-pressor test have the potential to serve as biomarkers of opioid analgesia. PERSPECTIVE: This exploratory study presents evidence of opioid specific effects on the pain system at peripheral and central levels. The findings give insights into which measures are the most sensitive for assessing opioid-specific effects.
Collapse
Affiliation(s)
- Dina Lelic
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Debbie Grønlund
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Fabricio Ariel Jure
- Integrative Neuroscience, Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Szikszay TM, Adamczyk WM, Hoegner A, Woermann N, Luedtke K. The effect of acute-experimental pain models on offset analgesia. Eur J Pain 2021; 25:1150-1161. [PMID: 33533139 DOI: 10.1002/ejp.1740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Offset analgesia (OA) is characterized by a disproportionately large decrease in pain perception after a slight decrease in noxious stimulation. In patients with ongoing pain, this response is reduced. The effect is pronounced in painful body areas. The influence of acute pain has not been sufficiently investigated. The aim of this study was to investigate the influence of two experimental acute pain models, measured within the area of acute pain and on the non-affected opposite side, thereby considering the possible somatotopic nature of OA. METHODS Healthy, pain-free volunteers (n = 75) were randomly assigned to one of three groups (cold water, exercise and control group). The 'cold water group' immersed one hand into cold water for 3 min (Cold Pressor Task), while the 'exercise group' performed an isometric grip exercise for 3 min. There was no manipulation in the control group. Each experimental pain stimulus was performed at both (dominant, non-dominant) forearms. The individualized OA paradigm consisted of offset and constant temperature trials. Offset analgesia was measured immediately before, during and after the experimental pain stimuli. RESULTS A significant difference in OA was shown during experimental pain when compared to the control condition (exercise vs. control: p < 0.001, cold vs. control: p = 0.001), with no difference between the experimental conditions (p > 0.05). Immediately following the pain stimulation, results were marginally non-significant (p = 0.05). CONCLUSIONS Experimental painful stimulation reduced OA. This result should be interpreted with caution due to potential influences of conditioned pain modulation or exercise-induced hypoalgesia as well as possible floor effects. SIGNIFICANCE Temporal contrast of pain perception is inhibited in acute pain states. This study showed that reduced offset analgesia is observed when pain is experimentally induced using noxious cold and exercise stimuli.
Collapse
Affiliation(s)
- Tibor M Szikszay
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P. E. R. L.), Institute of Health Sciences, University of Luebeck, Luebeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Waclaw M Adamczyk
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P. E. R. L.), Institute of Health Sciences, University of Luebeck, Luebeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Alexandra Hoegner
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P. E. R. L.), Institute of Health Sciences, University of Luebeck, Luebeck, Germany
| | - Nele Woermann
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P. E. R. L.), Institute of Health Sciences, University of Luebeck, Luebeck, Germany
| | - Kerstin Luedtke
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P. E. R. L.), Institute of Health Sciences, University of Luebeck, Luebeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
8
|
Tapentadol treatment results in long-term pain relief in patients with chronic low back pain and associates with reduced segmental sensitization. Pain Rep 2020; 5:e877. [PMID: 33364540 PMCID: PMC7752667 DOI: 10.1097/pr9.0000000000000877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 11/26/2022] Open
Abstract
The endogenous pain system may be used as a biomarker in the pharmacological treatment of patients with CLBP, enabling an individualized, mechanism-based treatment approach. Introduction: Chronic low back pain (CLBP) is one of the most common chronic pain conditions in pain practice. Objectives: In the current study, we describe phenotypes of patients with CLBP based on the status of their endogenous pain modulatory system. Methods: Conditioned pain modulation (a measure of central pain inhibition), temporal summation (TS, a measure of pain facilitation), and offset analgesia (a measure of temporal filtering of nociception) were evaluated in 53 patients with CLBP at painful and nonpainful sites. Next, in a double-blind, randomized, placebo-controlled trial, 40 patients with defective conditioned pain modulation responses received treatment with tapentadol prolonged-release or placebo for 3 months. Results: The majority of patients (87%) demonstrated loss of central pain inhibition combined with segmentally increased TS and reduced offset analgesia at the lower back region. During treatment, tapentadol reduced pain intensity more than placebo (tapentadol −19.5 ± 2.1 mm versus placebo −7.1 ± 1.8 mm, P = 0.025). Furthermore, tapentadol significantly decreased pain facilitation by reduction of TS responses at the lower back (tapentadol −0.94 ± 1.9 versus placebo 0.01 ± 1.5, P = 0.020), which correlated with pain reduction (P < 0.001). Conclusion: Patients with CLBP demonstrated different phenotypes of endogenous pain modulation. In patients with reduced conditioned pain modulation, tapentadol produced long-term pain relief that coincided with reduction of signs of pain facilitation. These data indicate that the endogenous pain system may be used as a biomarker in the pharmacological treatment of CLBP, enabling an individualized, mechanism-based treatment approach.
Collapse
|
9
|
Sitsen E, van Velzen M, de Rover M, Dahan A, Niesters M. Hyperalgesia and Reduced Offset Analgesia During Spinal Anesthesia. J Pain Res 2020; 13:2143-2149. [PMID: 33061546 PMCID: PMC7519835 DOI: 10.2147/jpr.s258533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction Spinal anesthesia induces short-term deafferentation and causes connectivity changes in brain areas involved in endogenous pain modulation. We determined whether spinal anesthesia alters pain sensitivity and offset analgesia. Offset analgesia is a manifestation of endogenous pain modulation and characterized by profound analgesia upon a small decrease in noxious stimulation. Methods In this randomized controlled crossover trial, static thermal pain responses and offset analgesia were obtained in 22 healthy male volunteers during spinal anesthesia and control conditions (absence of spinal anesthesia). Pain responses and offset analgesia were measured on a remote skin area above the upper level of anesthesia (C8/Th1). Results Following spinal injection of the local anesthetic, the average maximum anesthesia level was Th6. Static pain scores at C8/Th1 were higher during spinal anesthesia compared to control: 59.1 ± 15.0 mm (spinal anesthesia) versus 51.7 ± 19.7 mm (control; p = 0.03). Offset analgesia responses were decreased during spinal analgesia: pain score decrease 79 ± 27% (spinal anesthesia) versus 90 ± 17% (control; p = 0.016). Discussion We confirmed that spinal anesthesia-induced deafferentation causes hyperalgesic responses to noxious thermal stimulation and reduced offset analgesia at dermatomes remote and above the level of deafferentation. While these data suggest that the reduction of offset analgesia has a central origin, related to alterations in brain areas involved in inhibitory pain control, we cannot exclude alternative (peripheral) mechanisms. Trial Registration Dutch Cochrane Center under identifier (www.trialregister.nl) NL3874.
Collapse
Affiliation(s)
- Elske Sitsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Mischa de Rover
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| |
Collapse
|
10
|
Petersen KK, Simonsen O, Olesen AE, Mørch CD, Arendt‐Nielsen L. Pain inhibitory mechanisms and response to weak analgesics in patients with knee osteoarthritis. Eur J Pain 2019; 23:1904-1912. [DOI: 10.1002/ejp.1465] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kristian Kjær Petersen
- SMI, Department of Health Science and Technology, School of Medicine Aalborg University Aalborg Denmark
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, School of Medicine Aalborg University Aalborg Denmark
| | - Ole Simonsen
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Department of Orthopedic Surgery Aalborg University Hospital Aalborg Denmark
| | - Anne Estrup Olesen
- Department of Clinical Medicine Aalborg University Aalborg Denmark
- Department of Clinical Pharmacology Aalborg University Hospital Aalborg Denmark
| | - Carsten Dahl Mørch
- SMI, Department of Health Science and Technology, School of Medicine Aalborg University Aalborg Denmark
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, School of Medicine Aalborg University Aalborg Denmark
| | - Lars Arendt‐Nielsen
- SMI, Department of Health Science and Technology, School of Medicine Aalborg University Aalborg Denmark
| |
Collapse
|
11
|
Derbyshire SWG, Long VJE, Asplund CL. Stepwise increasing sequential offsets cannot be used to deliver high thermal intensities with little or no perception of pain. J Neurophysiol 2019; 122:729-736. [PMID: 31242398 DOI: 10.1152/jn.00007.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Offset analgesia (OA) is the disproportionate decrease in pain experience following a slight decrease in noxious heat stimulus intensity. We tested whether sequential offsets would allow noxious temperatures to be reached with little or no perception of pain. Forty-eight participants continuously rated their pain experience during trials containing trains of heat stimuli delivered by Peltier thermode. Stimuli were adjusted through either stepwise sequential increases of 2°C and decreases of 1°C or direct step increases of 1°C up to a maximum of 46°C. Step durations (1, 2, 3, or 6 s) varied by trial. Pain ratings generally followed presented temperature, regardless of step condition or duration. For 6-s steps, OA was observed after each decrease, but the overall pain trajectory was unchanged. We found no evidence that sequential offsets could allow for little pain perception during noxious temperature presentation.NEW & NOTEWORTHY Offset analgesia is the disproportionate decrease in pain experience following a slight decrease in noxious heat stimulus intensity. We tested whether sequential offsets would allow noxious temperatures to be reached with little or no perception of pain. We found little evidence of such overall analgesia. In contrast, we observed analgesic effects after each offset with long-duration stimuli, even with relatively low-temperature noxious stimuli.
Collapse
Affiliation(s)
- Stuart W G Derbyshire
- Department of Psychology, National University of Singapore, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victoria Jane En Long
- Division of Social Sciences, Yale-NUS College, National University of Singapore, Singapore
| | - Christopher L Asplund
- Department of Psychology, National University of Singapore, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Social Sciences, Yale-NUS College, National University of Singapore, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore
| |
Collapse
|