1
|
Wang YM, Chen LL, Wang CL, Yan C, Xie GR, Yang XH. Changed ventral striatum structural covariance and grey matter volume in depression during a one-year follow-up. Psychiatry Res Neuroimaging 2024; 344:111887. [PMID: 39236484 DOI: 10.1016/j.pscychresns.2024.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Empirical findings suggest reduced cortico-striatal structural connectivity in patients with major depressive disorder (MDD). However, the relationship between the abnormal structural covariance and one-year outcome of first-episode drug-naive patients has not been evaluated. This longitudinal study aimed to identify specific changes of ventral striatum-related brain structural covariance and grey matter volume in forty-two first-episode patients with major depression disorder compared with thirty-seven healthy controls at the baseline and the one-year follow-up conditions. At the baseline, patients showed decreased structural covariance between the left ventral striatum and the bilateral superior frontal gyrus (SFG), bilateral middle frontal gyrus (MFG), right supplementary motor area (SMA) and left precentral gyrus and increased grey matter volume at the left fusiform and left parahippocampus. At the one-year follow-up, patients showed decreased structural covariance between the left ventral striatum and the right SFG, right MFG, left precentral gyrus and left postcentral gyrus, and increased structural covariance between the right ventral striatum and the right amygdala, right hippocampus, right parahippocampus, right superior temporal pole, right insula and right olfactory bulb and decreased volume at the left SMA compared with controls. These findings suggest that specific ventral striatum connectivity changes contribute to the early brain development of the MDD.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Liang-Liang Chen
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Cheng-Lei Wang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guang-Rong Xie
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | - Xin-Hua Yang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Collantoni E, Alberti F, Dahmen B, von Polier G, Konrad K, Herpertz-Dahlmann B, Favaro A, Seitz J. Intra-individual cortical networks in Anorexia Nervosa: Evidence from a longitudinal dataset. EUROPEAN EATING DISORDERS REVIEW 2024; 32:298-309. [PMID: 37876109 DOI: 10.1002/erv.3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE This work investigates cortical thickness (CT) and gyrification patterns in Anorexia Nervosa (AN) before and after short-term weight restoration using graph theory tools. METHODS 38 female adolescents with AN underwent structural magnetic resonance imaging scans at baseline and after - on average - 3.5 months following short-term weight restoration while 53 age-matched healthy controls (HCs) were scanned once. Graph measures were compared between groups and longitudinally within the AN group. Associations with clinical measures such as age of onset, duration of illness, BMI standard deviation score (BMI-SDS), and longitudinal weight changes were tested via stepwise regression. RESULTS Cortical thickness graphs of patients with acute AN displayed lower modularity and small-world index (SWI) than HCs. Modularity recovered after weight gain. Reduced global efficiency and SWI were observed in patients at baseline compared to HCs based on gyrification networks. Significant associations between local clustering of CT at admission and BMI-SDS, and clustering/global efficiency of gyrification and duration of illness emerged. CONCLUSIONS Our results indicate a shift towards less organised CT networks in patients with acute AN. After weight recovery, the disarrangement seems to be partially reduced. However, longer-term follow-ups are needed to determine whether cortical organizational patterns fully return to normal.
Collapse
Affiliation(s)
- Enrico Collantoni
- Department of Neurosciences, University of Padua, Padova, Italy
- Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | - Brigitte Dahmen
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
| | - Georg von Polier
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
- Child and Adolescent Psychiatry, University Hospital, Frankfurt, Germany
| | - Kerstin Konrad
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
- Section Neuropsychology, Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
| | | | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy
- Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Jochen Seitz
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Nazarova A, Drobinin V, Helmick CA, Schmidt MH, Cookey J, Uher R. Intracortical Myelin in Youths at Risk for Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100285. [PMID: 38323155 PMCID: PMC10844807 DOI: 10.1016/j.bpsgos.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is a leading cause of disability. To understand why depression develops, it is important to distinguish between early neural markers of vulnerability that precede the onset of MDD and features that develop during depression. Recent neuroimaging findings suggest that reduced global and regional intracortical myelination (ICM), especially in the lateral prefrontal cortex, may be associated with depression, but it is unknown whether it is a precursor or a consequence of MDD. The study of offspring of affected parents offers the opportunity to distinguish between precursors and consequences by examining individuals who carry high risk at a time when they have not experienced depression. Methods We acquired 129 T1-weighted and T2-weighted scans from 56 (25 female) unaffected offspring of parents with depression and 114 scans from 63 (34 female) unaffected offspring of parents without a history of depression (ages 9 to 16 years). To assess scan quality, we calculated test-retest reliability. We used the scan ratios to calculate myelin maps for 68 cortical regions. We analyzed data using mixed-effects modeling. Results ICM did not differ between high and low familial risk youths in global (B = 0.06, SE = 0.03, p = .06) or regional (B = 0.05, SE = 0.03, p = .08) analyses. Our pediatric sample had high ICM reliability (intraclass correlation coefficient = 0.79; 95% CI, 0.55-0.88). Conclusions Based on our results, reduced ICM does not appear to be a precursor of MDD. Future studies should examine ICM in familial high-risk youths across a broad developmental period.
Collapse
Affiliation(s)
- Anna Nazarova
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Vladislav Drobinin
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Carl A. Helmick
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Matthias H. Schmidt
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Kong N, Gao C, Xu M, Gao X. Changes in the anterior cingulate cortex in Crohn's disease: A neuroimaging perspective. Brain Behav 2021; 11:e02003. [PMID: 33314765 PMCID: PMC7994700 DOI: 10.1002/brb3.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Evidence suggests that Crohn's disease (CD) pathophysiology goes beyond the gastrointestinal tract and is also strongly associated with the brain. In particular, the anterior cingulate cortex (ACC), which plays an integral role in the first brain as part of the default mode network (DMN) and pain matrix, shows abnormalities using multiple neuroimaging modalities. This review summarizes nine related studies that investigated changes in the ACC using structural magnetic resonance imaging, resting-state functional magnetic resonance imaging, and magnetic resonance spectroscopy. METHODS An extensive PubMed literature search was conducted from 1980 to August 2020. In a review of the articles identified, particular attention was paid to analysis methods, technical protocol characteristics, and specific changes in the ACC. RESULTS In terms of morphology, a decrease in gray matter volume and cortical thickness was observed along with an increase in local gyrification index. In terms of function, functional connectivity (FC) within the DMN was increased. FC between the ACC and the amygdala was decreased. Higher amplitudes of low-frequency fluctuation and graph theory results, including connectivity strength, clustering coefficient, and local efficiency, were detected. In terms of neurotransmitter changes, the concentrations of glutamate increased along with a decrease in gamma-aminobutyric acid, providing a rational explanation for abdominal pain. These changes may be attributed to stress, pain, and negative emotions, as well as changes in gut microbiota. CONCLUSIONS For patients with CD, the ACC demonstrates structural, functional, and metabolic changes. In terms of clinical findings, the ACC plays an important role in the onset of depression/anxiety and abdominal pain. Therefore, successful modulation of this pathway may guide treatment.
Collapse
Affiliation(s)
- Ning Kong
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuning Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Yun JY, Kim YK. Phenotype Network and Brain Structural Covariance Network of Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:3-18. [PMID: 33834391 DOI: 10.1007/978-981-33-6044-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phenotype networks enable clinicians to elucidate the patterns of coexistence and interactions among the clinical symptoms, negative cognitive styles , neurocognitive performance, and environmental factors in major depressive disorder (MDD). Results of phenotype network approach could be used in finding the target symptoms as these are tightly connected or associated with many other phenomena within the phenotype network of MDD specifically when comorbid psychiatric disorder(s) is/are present. Further, by comparing the differential patterns of phenotype networks before and after the treatment, changing or enduring patterns of associations among the clinical phenomena in MDD have been deciphered.Brain structural covariance networks describe the inter-regional co-varying patterns of brain morphologies, and overlapping findings have been reported between the brain structural covariance network and coordinated trajectories of brain development and maturation. Intra-individual brain structural covariance illustrates the degrees of similarities among the different brain regions for how much the values of brain morphological features are deviated from those of healthy controls. Inter-individual brain structural covariance reflects the degrees of concordance among the different brain regions for the inter-individual distribution of brain morphologic values. Estimation of the graph metrics for these brain structural covariance networks uncovers the organizational profile of brain morphological variations in the whole brain and the regional distribution of brain hubs.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea. .,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, Ansan, Republic of Korea
| |
Collapse
|
6
|
Heinze K, Shen X, Hawkins E, Harris MA, de Nooij L, McIntosh AM, Wood SJ, Whalley HC. Aberrant structural covariance networks in youth at high familial risk for mood disorder. Bipolar Disord 2020; 22:155-162. [PMID: 31724284 PMCID: PMC7155114 DOI: 10.1111/bdi.12868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Current research suggests significant disruptions in functional brain networks in individuals with mood disorder, and in those at familial risk. Studies of structural brain networks provide important insights into synchronized maturational change but have received less attention. We aimed to investigate developmental relationships of large-scale brain networks in mood disorder using structural covariance (SC) analyses. METHODS We conducted SC analysis of baseline structural imaging data from 121 at the time of scanning unaffected high risk (HR) individuals (29 later developed mood disorder after a median time of 4.95 years), and 89 healthy controls (C-well) with no familial risk from the Scottish Bipolar Family Study (age 15-27, 64% female). Voxel-wise analyses of covariance were conducted to compare the associations between each seed region in visual, auditory, motor, speech, semantic, executive-control, salience and default-mode networks and the whole brain signal. SC maps were compared for (a) HR(all) versus C-well individuals, and (b) between those who remained well (HR-well), versus those who subsequently developed mood disorder (HR-MD), and C-well. RESULTS There were no significant differences between HR(all) and C-well individuals. On splitting the HR group based on subsequent clinical outcome, the HR-MD group however displayed greater baseline SC in the salience and executive-control network, and HR-well individuals showed less SC in the salience network, compared to C-well, respectively (P < .001). CONCLUSIONS These findings indicate differences in network-level inter-regional relationships, especially within the salience network, which precede onset of mood disorder in those at familial risk.
Collapse
Affiliation(s)
- Kareen Heinze
- School of PsychologyUniversity of BirminghamBirminghamUK,Institute for Mental HealthUniversity of BirminghamBirminghamUK,Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Xueyi Shen
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Emma Hawkins
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | | | - Laura de Nooij
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | | | - Stephen J. Wood
- School of PsychologyUniversity of BirminghamBirminghamUK,Institute for Mental HealthUniversity of BirminghamBirminghamUK,Orygen, The National Centre of Excellence in Youth Mental HealthMelbourneVic.Australia,Centre for Youth Mental HealthUniversity of MelbourneMelbourneVic.Australia
| | | |
Collapse
|