1
|
Mezzasalma M, Brunelli E, Odierna G, Guarino FM. Comparative cytogenetics of Hemorrhois hippocrepis and Malpolon monspessulanus highlights divergent karyotypes in Colubridae and Psammophiidae (Squamata: Serpentes). THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2023.2180547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Affiliation(s)
- M. Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - E. Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - G. Odierna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - F. M. Guarino
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
First Insights on the Karyotype Diversification of the Endemic Malagasy Leaf-Toed Geckos (Squamata: Gekkonidae: Uroplatus). Animals (Basel) 2022; 12:ani12162054. [PMID: 36009644 PMCID: PMC9404452 DOI: 10.3390/ani12162054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The geckos of the genus Uroplatus include peculiar endemic species to Madagascar. Even though they have been the subject of several morphological and molecular studies, karyological analyses have been performed only on U. phantasticus, leaving the chromosomal diversity of the genus completely unexplored. In this study, we performed a preliminary molecular analysis and a comparative cytogenetic study providing the first karyotype description of eight species of Uroplatus and an assessment of their karyological variability. We found chromosome diversity in the species studied in terms of total chromosome number (2n = 34–38), localization of loci of Nucleolar Organizer Regions (NORs) (alternatively on the 2nd, 6th, 10th or 16th pair), heterochromatin composition and occurrence of heteromorphic sex chromosome pairs. Adding our newly generated data to those available from the literature, we show that in the genus Uroplatus, as well as in a larger group of phylogenetically related gecko genera, chromosome diversification mainly occurred toward a reduction in the chromosome number by means of chromosome fusions and translocation of NOR-bearing chromosomes. We also hypothesize that the diversification of sex chromosome systems occurred independently in different genera. Abstract We provide here the first karyotype description of eight Uroplatus species and a characterization of their chromosomal diversity. We performed a molecular taxonomic assessment of several Uroplatus samples using the mitochondrial 12S marker and a comparative cytogenetic analysis with standard karyotyping, silver staining (Ag-NOR) and sequential C-banding + Giemsa, +Chromomycin A3 (CMA3), +4′,6-diamidino-2-phenylindole (DAPI). We found chromosomal variability in terms of chromosome number (2n = 34–38), heterochromatin composition and number and localization of loci or Nucleolar Organizer Regions (NORs) (alternatively on the 2nd, 6th, 10th or 16th pair). Chromosome morphology is almost constant, with karyotypes composed of acrocentric chromosomes, gradually decreasing in length. C-banding evidenced a general low content of heterochromatin, mostly localized on pericentromeric and telomeric regions. Centromeric bands varied among the species studied, resulting in CMA3 positive and DAPI negative or positive to both fluorochromes. We also provide evidence of a first putative heteromorphic sex chromosome system in the genus. In fact, in U. alluaudi the 10th pair was highly heteromorphic, with a metacentric, largely heterochromatic W chromosome, which was much bigger than the Z. We propose an evolutionary scenario of chromosome reduction from 2n = 38 to 2n = 34, by means of translocations of microchromosomes on larger chromosomes (often involving the NOR-bearing microchromosomes). Adding our data to those available from the literature, we show that similar processes characterized the evolutionary radiation of a larger gecko clade. Finally, we hypothesize that sex chromosome diversification occurred independently in different genera.
Collapse
|
3
|
Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis. Genes (Basel) 2022; 13:genes13071185. [PMID: 35885968 PMCID: PMC9318745 DOI: 10.3390/genes13071185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of two independently evolved XX/XY sex determination systems in the snake genera Python and Boa sparked a new drive to study the evolution of sex chromosomes in poorly studied lineages of snakes, where female heterogamety was previously assumed. Therefore, we examined seven species from the genera Eryx, Cylindrophis, Python, and Tropidophis by conventional and molecular cytogenetic methods. Despite the fact that these species have similar karyotypes in terms of chromosome number and morphology, we detected variability in the distribution of heterochromatin, telomeric repeats, and rDNA loci. Heterochromatic blocks were mainly detected in the centromeric regions in all species, although accumulations were detected in pericentromeric and telomeric regions in a few macrochromosomes in several of the studied species. All species show the expected topology of telomeric repeats at the edge of all chromosomes, with the exception of Eryx muelleri, where additional accumulations were detected in the centromeres of three pairs of macrochromosomes. The rDNA loci accumulate in one pair of microchromosomes in all Eryx species and in Cylindrophis ruffus, in one macrochromosome pair in Tropidophis melanurus and in two pairs of microchromosomes in Python regius. Sex-specific differences were not detected, suggesting that these species likely have homomorphic, poorly differentiated sex chromosomes.
Collapse
|
4
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
5
|
Mezzasalma M, Andreone F, Odierna G, Guarino FM, Crottini A. Comparative cytogenetics on eight Malagasy Mantellinae (Anura, Mantellidae) and a synthesis of the karyological data on the subfamily. COMPARATIVE CYTOGENETICS 2022; 16:1-17. [PMID: 35211250 PMCID: PMC8857137 DOI: 10.3897/compcytogen.v16.i1.76260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
We performed a molecular and cytogenetic analysis on different Mantellinae species and revised the available chromosomal data on this group to provide an updated assessment of its karyological diversity and evolution. Using a fragment of the mitochondrial 16S rRNA, we performed a molecular taxonomic identification of the samples that were used for cytogenetic analyses. A comparative cytogenetic analysis, with Giemsa's staining, Ag-NOR staining and sequential C-banding + Giemsa + CMA + DAPI was performed on eight species: Gephyromantis sp. Ca19, G.striatus (Vences, Glaw, Andreone, Jesu et Schimmenti, 2002), Mantidactylus (Chonomantis) sp. Ca11, M. (Brygoomantis) alutus (Peracca, 1893), M. (Hylobatrachus) cowanii (Boulenger, 1882), Spinomantispropeaglavei "North" (Methuen et Hewitt, 1913), S.phantasticus (Glaw et Vences, 1997) and S. sp. Ca3. Gephyromantisstriatus, M. (Brygoomantis) alutus and Spinomantispropeaglavei "North" have a karyotype of 2n = 24 chromosomes while the other species show 2n = 26 chromosomes. Among the analysed species we detected differences in the number and position of telocentric elements, location of NOR loci (alternatively on the 6th, 7th or 10th pair) and in the distribution of heterochromatin, which shows species-specific patterns. Merging our data with those previously available, we propose a karyotype of 2n = 26 with all biarmed elements and loci of NORs on the 6th chromosome pair as the ancestral state in the whole family Mantellidae. From this putative ancestral condition, a reduction of chromosome number through similar tandem fusions (from 2n = 26 to 2n = 24) occurred independently in Mantidactylus Boulenger, 1895 (subgenus Brygoomantis Dubois, 1992), Spinomantis Dubois, 1992 and Gephyromantis Methuen, 1920. Similarly, a relocation of NORs, from the putative primitive configuration on the 6th chromosome, occurred independently in Gephyromantis, Blommersia Dubois, 1992, Guibemantis Dubois, 1992, Mantella Boulenger, 1882 and Spinomantis. Chromosome inversions of primitive biarmed elements likely generated a variable number of telocentric elements in Mantellanigricans Guibé, 1978 and a different number of taxa of Gephyromantis (subgenera Duboimantis Glaw et Vences, 2006 and Laurentomantis Dubois, 1980) and Mantidactylus (subgenera Brygoomantis, Chonomantis Glaw et Vences, 1994, Hylobatrachus Laurent, 1943 and Ochthomantis Glaw et Vences, 1994).
Collapse
Affiliation(s)
- Marcello Mezzasalma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, No 7, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Franco Andreone
- Museo Regionale di Scienze Naturali, Via G. Giolitti 36, 10123 Torino, Italy
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy
| | - Fabio Maria Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy
| | - Angelica Crottini
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, No 7, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
6
|
Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): A Synthesis from Original and Literature Data. Animals (Basel) 2021; 11:ani11092551. [PMID: 34573517 PMCID: PMC8470273 DOI: 10.3390/ani11092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The superfamily Helicoidea is a large and diverse group of Eupulmonata. The superfamily has been the subject of several molecular and phylogenetic studies which greatly improved our knowledge on the evolutionary relationships and historical biogeography of many families. In contrast, the available karyological information on Helicoidea still results in an obscure general picture, lacking a homogeneous methodological approach and a consistent taxonomic record. Nevertheless, the available karyological information highlights the occurrence of a significant chromosomal diversity in the superfamily in terms of chromosome number (varying from 2n = 40 to 2n = 62), chromosome morphology and the distribution of different karyological features among different taxonomic groups. Here we performed a molecular and a comparative cytogenetic analysis on of 15 Helicoidea species of three different families. Furthermore, to provide an updated assessment of the chromosomal diversity of the superfamily we reviewed all the available chromosome data. Finally, superimposing all the chromosome data gathered from different sources on the available phylogenetic relationships of the studied taxa, we discuss the overall observed chromosome diversity in Helicoidea and advance a hypothesis on its chromosomal evolution. Abstract We performed a molecular and a comparative cytogenetic analysis on different Helicoidea species and a review of all the available chromosome data on the superfamily to provide an updated assessment of its karyological diversity. Standard karyotyping, banding techniques, and Fluorescence in situ hybridization of Nucleolus Organizer Region loci (NOR-FISH) were performed on fifteen species of three families: two Geomitridae, four Hygromiidae and nine Helicidae. The karyotypes of the studied species varied from 2n = 44 to 2n = 60, highlighting a high karyological diversity. NORs were on a single chromosome pair in Cernuella virgata and on multiple pairs in four Helicidae, representing ancestral and derived conditions, respectively. Heterochromatic C-bands were found on pericentromeric regions of few chromosomes, being Q- and 4′,6-diamidino-2-phenylindole (DAPI) negative. NOR-associated heterochromatin was C-banding and chromomycin A3 (CMA3) positive. Considering the available karyological evidence on Helicoidea and superimposing the chromosome data gathered from different sources on available phylogenetic inferences, we describe a karyotype of 2n = 60 with all biarmed elements as the ancestral state in the superfamily. From this condition, an accumulation of chromosome translocations led to karyotypes with a lower chromosome number (2n = 50–44). This process occurred independently in different lineages, while an augment of the chromosome number was detectable in Polygyridae. Chromosome inversions were also relevant chromosome rearrangements in Helicoidea, leading to the formation of telocentric elements in karyotypes with a relatively low chromosome count.
Collapse
|
7
|
Mezzasalma M, Guarino FM, Odierna G. Lizards as Model Organisms of Sex Chromosome Evolution: What We Really Know from a Systematic Distribution of Available Data? Genes (Basel) 2021; 12:1341. [PMID: 34573323 PMCID: PMC8468487 DOI: 10.3390/genes12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| |
Collapse
|
8
|
Karyological Diversification in the Genus Lyciasalamandra (Urodela: Salamandridae). Animals (Basel) 2021; 11:ani11061709. [PMID: 34201034 PMCID: PMC8228943 DOI: 10.3390/ani11061709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Lycian salamanders of the genus Lyciasalamandra are characterized by a debated taxonomy and phylogenetic relationships. They have been the subject of various molecular and phylogenetic analyses, but their chromosomal diversity is completely unknown. We here present a comparative cytogenetic analysis on five out of the seven described species and seven subspecies of Lyciasalamandra, providing the first karyological assessment on the genus and comparing them to closely related representatives of the genus Salamandra. We analyzed the occurrence and distribution of different conserved (chromosome number and morphology) and highly variable karyological features. We found an impressive diversity in the configuration of nucleolus organizing regions (NORs), which alternatively occur either as heteromorphic or homomorphic loci on distinct regions of different chromosome pairs. We highlight that the observed peculiar taxon-specific pattern of chromosome markers supports the taxonomic validity of the different studied evolutionary lineages and is consistent with a scenario of synchronous evolution in the Lycian salamanders. Abstract We performed the first cytogenetic analysis on five out of the seven species of the genus Lyciasalamandra, including seven subspecies, and representatives of its sister genus Salamandra. All the studied species have a similar karyotype of 2n = 24, mostly composed of biarmed elements. C-bands were observed on all chromosomes, at centromeric, telomeric and interstitial position. We found a peculiar taxon-specific NOR configuration, including either heteromorphic and homomorphic NORs on distinct regions of different chromosomes. Lyciasalamandra a.antalyana and L. helverseni showed two homomorphic NORs (pairs 8 and 2, respectively), while heteromorphic NORs were found in L. billae (pairs 6, 12), L. flavimembris (pairs 2, 12), L. l. luschani (pairs 2, 12), L. l. basoglui (pairs 6, 12), L. l. finikensis (pairs 2, 6) and S. lanzai (pairs 8, 10). Homomorphic NORs with an additional supernumerary site were shown by S. s. salamandra (pairs 2, 8) and S. s. gigliolii (pairs 2, 10). This unexpected highly variable NOR configuration is probably derived from multiple independent NOR translocations and paracentric inversions and correlated to lineage divergence in Lyciasalamandra. These results support the taxonomic validity of the studied taxa and are consistent with a hypothesized scenario of synchronous evolution in the genus.
Collapse
|
9
|
Sidhom M, Said K, Chatti N, Guarino FM, Odierna G, Petraccioli A, Picariello O, Mezzasalma M. Karyological characterization of the common chameleon (Chamaeleo chamaeleon) provides insights on the evolution and diversification of sex chromosomes in Chamaeleonidae. ZOOLOGY 2020; 141:125738. [PMID: 32291142 DOI: 10.1016/j.zool.2019.125738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
Abstract
Chameleons display high karyological diversity in chromosome number (from 2n = 20 to 62), morphology, heterochromatin distribution and location of specific chromosomal markers, making them unique study models in evolutionary cytogenetics. However, most available cytogenetic data are limited to the description of the chromosome number and morphology. Concerning sex chromosomes, our knowledge is limited to ZZ/ZW and Z1Z1Z2Z2/Z1Z2W systems in the genus Furcifer and the isolation of sex-linked, male-specific, sequences in Chamaeleo calyptratus, but the putative XY chromosomes have still to be identified in Chamaeleo and the conservation of male heterogamety in the genus needs confirmation from other species. In this study we performed a molecular and a cytogenetic analysis on C. chamaeleon, using standard, banding methods and molecular cytogenetics to provide a throughout karyological characterization of the species and to identify and locate the putative XY chromosomes. We confirm that the chromosome formula of the species is 2n = 24, with 12 metacentric macrochromosomes, 12 microchromosomes and NORs on the second chromosome pair. Heterochromatin was detected as weak C-bands on centromeric regions, differently from what was previously reported for C. calyptratus. Fluorescence in situ hybridization (FISH) showed the occurrence of interspersed telomeric signals on most macrochromosomes, suggesting that ancient chromosome fusions may have led to a reduction of the chromosome number. Using a combination of molecular and FISH analyses, we proved that male specific Restriction site-Associated DNA sequences (RADseq) isolated in C. calyptratus are conserved in C. chamaeleon and located the putative XY chromosomes on the second chromosome pair. We also identified different transposable elements in the focal taxa, which are highly interspersed on most chromosome pairs.
Collapse
Affiliation(s)
- Marwa Sidhom
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Taher Hadded (B.P 74), Monastir, 5000, Tunisia
| | - Khaled Said
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Taher Hadded (B.P 74), Monastir, 5000, Tunisia
| | - Noureddine Chatti
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Taher Hadded (B.P 74), Monastir, 5000, Tunisia
| | - Fabio M Guarino
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy.
| | - Gaetano Odierna
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Agnese Petraccioli
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Orfeo Picariello
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Marcello Mezzasalma
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|
10
|
FALCIONE CAMILA, HERNANDO ALEJANDRA, BRESSA MARÍAJOSÉ. Comparative cytogenetic analysis in Erythrolamprus snakes (Serpentes: Dipsadidae) from Argentina. ACTA ACUST UNITED AC 2018; 90:1417-1429. [DOI: 10.1590/0001-3765201820170374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
|
11
|
do Nascimento VD, Coelho KA, Nogaroto V, de Almeida RB, Ziemniczak K, Centofante L, Pavanelli CS, Torres RA, Moreira-Filho O, Vicari MR. Do multiple karyomorphs and population genetics of freshwater darter characines (Apareiodon affinis) indicate chromosomal speciation? ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Mezzasalma M, Andreone F, Aprea G, Glaw F, Odierna G, Guarino FM. When can chromosomes drive speciation? The peculiar case of the Malagasy tomato frogs (genus Dyscophus). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
|
14
|
Mezzasalma M, Andreone F, Glaw F, Petraccioli A, Odierna G, Guarino FM. A karyological study of three typhlopid species with some inferences on chromosome evolution in blindsnakes (Scolecophidia). ZOOL ANZ 2016. [DOI: 10.1016/j.jcz.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Viana PF, Ribeiro LB, Souza GM, Chalkidis HDM, Gross MC, Feldberg E. Is the Karyotype of Neotropical Boid Snakes Really Conserved? Cytotaxonomy, Chromosomal Rearrangements and Karyotype Organization in the Boidae Family. PLoS One 2016; 11:e0160274. [PMID: 27494409 PMCID: PMC4975421 DOI: 10.1371/journal.pone.0160274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Boids are primitive snakes from a basal lineage that is widely distributed in Neotropical region. Many of these species are both morphologically and biogeographically divergent, and the relationship among some species remains uncertain even with evolutionary and phylogenetic studies being proposed for the group. For a better understanding of the evolutionary relationship between these snakes, we cytogenetically analysed 7 species and 3 subspecies of Neotropical snakes from the Boidae family using different chromosomal markers. The karyotypes of Boa constrictor occidentalis, Corallus hortulanus, Eunectes notaeus, Epicrates cenchria and Epicrates assisi are presented here for the first time with the redescriptions of the karyotypes of Boa constrictor constrictor, B. c. amarali, Eunectes murinus and Epicrates crassus. The three subspecies of Boa, two species of Eunectes and three species of Epicrates exhibit 2n = 36 chromosomes. In contrast, C. hortulanus presented a totally different karyotype composition for the Boidae family, showing 2n = 40 chromosomes with a greater number of macrochromosomes. Furthermore, chromosomal mapping of telomeric sequences revealed the presence of interstitial telomeric sites (ITSs) on many chromosomes in addition to the terminal markings on all chromosomes of all taxa analysed, with the exception of E. notaeus. Thus, we demonstrate that the karyotypes of these snakes are not as highly conserved as previously thought. Moreover, we provide an overview of the current cytotaxonomy of the group.
Collapse
Affiliation(s)
- Patrik F. Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araujo 2936, Petrópolis, CEP: 69067-375 Manaus, AM, Brazil
- * E-mail:
| | - Leila B. Ribeiro
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araujo 2936, Petrópolis, CEP: 69067-375 Manaus, AM, Brazil
| | | | | | - Maria Claudia Gross
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Rua General Rodrigo Otávio Num. 3000, Mini-Campus Coroado, CEP: 66077070 Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araujo 2936, Petrópolis, CEP: 69067-375 Manaus, AM, Brazil
| |
Collapse
|
16
|
Altmanová M, Rovatsos M, Kratochvíl L, Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12751 10.1080/11250000409356641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marie Altmanová
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| | - Michail Rovatsos
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| | - Lukáš Kratochvíl
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| | - Martina Johnson Pokorná
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
- Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Rumburská 89 Liběchov Czech Republic
| |
Collapse
|
17
|
Mezzasalma M, Visone V, Petraccioli A, Odierna G, Capriglione T, Guarino FM. Non-random accumulation of LINE1-like sequences on differentiated snake W chromosomes. J Zool (1987) 2016. [DOI: 10.1111/jzo.12355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. Mezzasalma
- Department of Biology; University of Naples Federico II; Naples Italy
| | - V. Visone
- Department of Biology; University of Naples Federico II; Naples Italy
| | - A. Petraccioli
- Department of Biology; University of Naples Federico II; Naples Italy
| | - G. Odierna
- Department of Biology; University of Naples Federico II; Naples Italy
| | - T. Capriglione
- Department of Biology; University of Naples Federico II; Naples Italy
| | - F. M. Guarino
- Department of Biology; University of Naples Federico II; Naples Italy
| |
Collapse
|
18
|
Altmanová M, Rovatsos M, Kratochvíl L, Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12751] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marie Altmanová
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| | - Michail Rovatsos
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| | - Lukáš Kratochvíl
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| | - Martina Johnson Pokorná
- Faculty of Science; Department of Ecology; Charles University in Prague; Viničná 7 Praha 2 Czech Republic
- Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Rumburská 89 Liběchov Czech Republic
| |
Collapse
|
19
|
Karyological analyses of Pseudhymenochirus merlini and Hymenochirus boettgeri provide new insights into the chromosome evolution in the anuran family Pipidae. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes. Sci Rep 2015; 5:13196. [PMID: 26286647 PMCID: PMC4541320 DOI: 10.1038/srep13196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait.
Collapse
|
21
|
Mezzasalma M, Dall'Asta A, Loy A, Cheylan M, Lymberakis P, Zuffi MAL, Tomović L, Odierna G, Guarino FM. A sisters’ story: comparative phylogeography and taxonomy ofHierophis viridiflavusandH. gemonensis(Serpentes, Colubridae). ZOOL SCR 2015. [DOI: 10.1111/zsc.12115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Marcello Mezzasalma
- Dipartimento di Biologia; Univerisità degli Studi di Napoli Federico II; Via Cinthia, 80126, Napoli Italy
| | - Andrea Dall'Asta
- Museo Civico di Storia Naturale di Trieste; Via dei Tominz 4, 34139, Trieste Italy
| | - Anna Loy
- Department of Biosciences and Territory; University of Molise; Contrada Fonte Lappone; 86170, Pesche Italy
| | - Marc Cheylan
- EPHE - UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive; Route de Mende, 34293, Montpellier France
| | - Petros Lymberakis
- Natural History Museum of Crete; University of Crete; Knossou Ave. 71409, Crete, Irakleio Greece
| | - Marco A. L. Zuffi
- Museum of Natural History; University of Pisa; Via Roma 79, 56011, Calci Italy
| | - Ljiljana Tomović
- Faculty of Biology; University of Belgrade; Studentski trg 16, 11000, Belgrade Serbia
| | - Gaetano Odierna
- Dipartimento di Biologia; Università di Napoli Federico II; Via Cinthia, 80126, Napoli, Naples Italy
| | - Fabio M. Guarino
- Dipartimento di Biologia; Univerisità degli Studi di Napoli Federico II; Via Cinthia, 80126, Napoli Italy
| |
Collapse
|