1
|
Meissner M, Napolitano A, Thway K, Huang P, Jones RL. Pharmacotherapeutic strategies for epithelioid sarcoma: are we any closer to a non-surgical cure? Expert Opin Pharmacother 2023; 24:1395-1401. [PMID: 37326105 DOI: 10.1080/14656566.2023.2224500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Epithelioid sarcoma (ES) is a rare soft tissue sarcoma subtype, predominantly occurring in children and young adults. Despite optimal management of localized disease, approximately 50% of patients develop advanced disease. The management of advanced ES remains challenging due to limited response to conventional chemotherapy and despite novel oral EZH2 inhibitors that have better tolerability but similar efficacy to chemotherapy. AREAS COVERED We performed a literature review using the PubMed (MEDLINE) and Web of Science databases. We have focused on the role of chemotherapy, targeted agents such as EZH2 inhibitors, potential new targets and immune checkpoint inhibitors and combinations of therapies currently undergoing clinical investigation. EXPERT OPINION ES is a soft tissue sarcoma with a heterogeneous pathological, clinical, and molecular presentation. In the current era of precision medicine, more trials with targeted therapies and a combination of chemotherapy or immunotherapy with targeted therapies are required to establish optimal treatment for ES.
Collapse
Affiliation(s)
- Magdalena Meissner
- Velindre Cancer Centre, Cardiff, UK
- Department of Cancer and Genetics, Cardiff University, Cardiff, UK
| | | | - Khin Thway
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Paul Huang
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
2
|
Epithelioid Sarcoma-From Genetics to Clinical Practice. Cancers (Basel) 2020; 12:cancers12082112. [PMID: 32751241 PMCID: PMC7463637 DOI: 10.3390/cancers12082112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022] Open
Abstract
Epithelioid sarcoma is a mesenchymal soft tissue sarcoma often arising in the extremities, usually in young adults with a pick of incidence at 35 years of age. Epithelioid sarcoma (ES) is characterized by the loss of SMARCB1/INI1 (integrase interactor 1) or other proteins of the SWI/SNF complex. Two distinct types, proximal and distal, with varying biology and treatment outcomes, are distinguished. ES is known for aggressive behavior, including a high recurrence rate and regional lymph node metastases. An optimal long-term management strategy is still to be defined. The best treatment of localized ES is wide surgical resection. Neo-adjuvant or adjuvant radiotherapy may be recommended, as it reduces the local recurrence rate. Sentinel lymph node biopsy should be considered in ES patients. Patients with metastatic ES have a poor prognosis with an expected median overall survival of about a year. Doxorubicin-based regimens are recommended for advanced ES. Tazemetostat, an EZH2 methyltransferase, has shown promising results in ES patients. Novel therapies, including immunotherapy, are still needed.
Collapse
|
3
|
Regalbuto A, Tudosie A, Klenotic E. A metastatic distal-type epithelioid sarcoma: Case report and review. Int J Surg Case Rep 2020; 71:144-146. [PMID: 32450373 PMCID: PMC7256202 DOI: 10.1016/j.ijscr.2020.04.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
Epithelioid Sarcoma is a rare soft tissue tumor with an aggressive nature. Certain biomarker positivity or negativity can help distinguish from other tumors. SMARCB1 loss is predominant in most Epithelioid Sarcomas. Wide surgical excision is main treatment, but biomarker-targeted therapy is growing.
Introduction Epithelioid sarcoma is known as one of the rarest types of sarcomas and was identified as its own diagnosis by Dr. Franz Enzinger in 1970 after his realization of its massive overlap with many other diseases. This tumor has an aggressive clinical course with high recurrence and metastasis rates. Presentation of case This report will detail the case of a 39-year-old male who was diagnosed with Epithelioid Sarcoma and later succumbed to this disease. Discussion This report will emphasize epithelioid sarcoma morphology and immunohistochemistry with discussions on predisposition, prognostic factors, and current options for treatment modalities. Conclusion Future studies are needed to determine clear predisposition and screening practices; however modern pharmaceuticals have shown hopes of optimizing the course of this cancer.
Collapse
Affiliation(s)
- Avalon Regalbuto
- Ohio University Heritage College of Osteopathic Medicine, Cleveland, 4180 Warrensville Center Road, Warrensville Heights, OH 44122, United States.
| | - Andrew Tudosie
- Ohio University Heritage College of Osteopathic Medicine, Cleveland, 4180 Warrensville Center Road, Warrensville Heights, OH 44122, United States
| | - Eveline Klenotic
- Lake Health West Medical Center, 36000 Euclid Ave, Willoughby, OH 44094, United States
| |
Collapse
|
4
|
Berlow NE, Rikhi R, Geltzeiler M, Abraham J, Svalina MN, Davis LE, Wise E, Mancini M, Noujaim J, Mansoor A, Quist MJ, Matlock KL, Goros MW, Hernandez BS, Doung YC, Thway K, Tsukahara T, Nishio J, Huang ET, Airhart S, Bult CJ, Gandour-Edwards R, Maki RG, Jones RL, Michalek JE, Milovancev M, Ghosh S, Pal R, Keller C. Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma. BMC Cancer 2019; 19:593. [PMID: 31208434 PMCID: PMC6580486 DOI: 10.1186/s12885-019-5681-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer patients with advanced disease routinely exhaust available clinical regimens and lack actionable genomic medicine results, leaving a large patient population without effective treatments options when their disease inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates molecular sequencing data with functional assay data to develop patient-specific combination cancer treatments. METHODS Tissue taken from a murine model of alveolar rhabdomyosarcoma was used to perform single agent drug screening and DNA/RNA sequencing experiments; results integrated via our computational modeling approach identified a synergistic personalized two-drug combination. Cells derived from the primary murine tumor were allografted into mouse models and used to validate the personalized two-drug combination. Computational modeling of single agent drug screening and RNA sequencing of multiple heterogenous sites from a single patient's epithelioid sarcoma identified a personalized two-drug combination effective across all tumor regions. The heterogeneity-consensus combination was validated in a xenograft model derived from the patient's primary tumor. Cell cultures derived from human and canine undifferentiated pleomorphic sarcoma were assayed by drug screen; computational modeling identified a resistance-abrogating two-drug combination common to both cell cultures. This combination was validated in vitro via a cell regrowth assay. RESULTS Our computational modeling approach addresses three major challenges in personalized cancer therapy: synergistic drug combination predictions (validated in vitro and in vivo in a genetically engineered murine cancer model), identification of unifying therapeutic targets to overcome intra-tumor heterogeneity (validated in vivo in a human cancer xenograft), and mitigation of cancer cell resistance and rewiring mechanisms (validated in vitro in a human and canine cancer model). CONCLUSIONS These proof-of-concept studies support the use of an integrative functional approach to personalized combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and without actionable DNA sequencing-based therapy.
Collapse
Affiliation(s)
- Noah E. Berlow
- Children’s Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR 97005 USA
- Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409 USA
| | - Rishi Rikhi
- Children’s Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR 97005 USA
| | - Mathew Geltzeiler
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239 USA
- Department of Otolaryngology – Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jinu Abraham
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Matthew N. Svalina
- Children’s Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR 97005 USA
| | - Lara E. Davis
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239 USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Erin Wise
- Champions Oncology, Baltimore, MD 21205 USA
| | | | - Jonathan Noujaim
- Royal Marsden Hospital and Institute of Cancer Research, London, SW3 6JJ UK
- Hôpital Maisonneuve-Rosemont, Montreal, H1T 2M4 Canada
| | - Atiya Mansoor
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Michael J. Quist
- Center for Spatial Systems Biomedicine Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kevin L. Matlock
- Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409 USA
- Omics Data Automation, 12655 SW Beaverdam Road, Beaverton, OR 97005 USA
| | - Martin W. Goros
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229 USA
| | - Brian S. Hernandez
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229 USA
| | - Yee C. Doung
- Department of Orthopedic Surgery, Oregon Health & Science University, Portland, OR 97239 USA
| | - Khin Thway
- Royal Marsden Hospital and Institute of Cancer Research, London, SW3 6JJ UK
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
| | - Jun Nishio
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Elaine T. Huang
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239 USA
| | | | | | - Regina Gandour-Edwards
- Department of Pathology & Laboratory Medicine, UC Davis Health System, Sacramento, CA 95817 USA
| | - Robert G. Maki
- Sarcoma Program, Zucker School of Medicine at Hofstra/Northwell & Cold Spring Harbor Laboratory, Long Island, NY 10142 USA
| | - Robin L. Jones
- Royal Marsden Hospital and Institute of Cancer Research, London, SW3 6JJ UK
| | - Joel E. Michalek
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229 USA
| | - Milan Milovancev
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 USA
| | - Souparno Ghosh
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409 USA
| | - Ranadip Pal
- Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409 USA
| | - Charles Keller
- Children’s Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR 97005 USA
| |
Collapse
|
5
|
Noujaim J, Thway K, Bajwa Z, Bajwa A, Maki RG, Jones RL, Keller C. Epithelioid Sarcoma: Opportunities for Biology-Driven Targeted Therapy. Front Oncol 2015; 5:186. [PMID: 26347853 PMCID: PMC4538302 DOI: 10.3389/fonc.2015.00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelioid sarcoma (ES) is a soft tissue sarcoma of children and young adults for which the preferred treatment for localized disease is wide surgical resection. Medical management is to a great extent undefined, and therefore for patients with regional and distal metastases, the development of targeted therapies is greatly desired. In this review, we will summarize clinically relevant biomarkers (e.g., SMARCB1, CA125, dysadherin, and others) with respect to targeted therapeutic opportunities. We will also examine the role of EGFR, mTOR, and polykinase inhibitors (e.g., sunitinib) in the management of local and disseminated disease. Toward building a consortium of pharmaceutical, academic, and non-profit collaborators, we will discuss the state of resources for investigating ES with respect to cell line resources, tissue banks, and registries so that a roadmap can be developed toward effective biology-driven therapies.
Collapse
Affiliation(s)
| | | | - Zia Bajwa
- Children's Cancer Therapy Development Institute , Fort Collins, CO , USA
| | - Ayeza Bajwa
- Children's Cancer Therapy Development Institute , Fort Collins, CO , USA
| | - Robert G Maki
- Adult and Paediatric Sarcoma Program, Tisch Cancer Institute, Mount Sinai School of Medicine , New York, NY , USA
| | | | - Charles Keller
- Children's Cancer Therapy Development Institute , Fort Collins, CO , USA
| |
Collapse
|
6
|
Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Invest New Drugs 2014; 33:257-68. [PMID: 25344452 DOI: 10.1007/s10637-014-0178-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Sunitinib is a multikinase inhibitor active in various cancers types including renal cancers and endocrine tumors. The study analyzed the influence of the lean body mass (LBM) and of pharmacogenetic variants on the exposure to sunitinib and its active metabolite, SU12662, and on sunitinib toxicity and clinical activity. MATERIALS AND METHODS Exposure to sunitinib and SU12662 was assessed on days 10 and 21 during the first treatment cycle. Acute toxicity was graded using the NCI 4.0 CTCAE ver. 4.0. The LBM and 14 common single nucleotide polymorphisms in the CYP3A4/3A5, NR1I2, NR1I3, ABCB1, and ABCG2 genes were analyzed according to the drug exposure at day 10. Determinants (including sunitinib exposure and pharmacogenetic variants) for toxicities were assessed, as well as the relationship between drug exposure and survival in renal cancer patients. RESULTS Ninety-two patients (60 % with renal cancer) were assessable for pharmacokinetics, toxicity and survival, and 66 for genetic analysis. The LBM (p < 0.0001) and a polymorphism in the ABCG2 transporter (421C>A) (p = 0.014) were two independent parameters accounting for the variability of composite (sunitinib + SU12662) exposure. Advanced age (OR = 1.47 [1.01-2.15], p = 0.048) and high sunitinib exposure (OR = 1.16 [1.05-1.28], p = 0.005) were independently associated with any grade ≥ 3 acute toxicity, and high SU12662 exposure was associated with grade ≥ 2 thrombocytopenia (OR = 1.27 [1.03-1.57], p = 0.028). A high composite area under the curve (AUC) >1,973 ng/mL∙h at day 21 was associated with a doubled survival (35.2 vs 16.7 months; log-rank p = 0.0051) in renal cancer patients. CONCLUSIONS This study indicates that LBM and drug monitoring may be helpful in the management of sunitinib-treated patients.
Collapse
|