1
|
Pellacani G, Lim HW, Stockfleth E, Sibaud V, Brugués AO, Saint Aroman M. Photoprotection: Current developments and controversies. J Eur Acad Dermatol Venereol 2024; 38 Suppl 5:12-20. [PMID: 38924160 DOI: 10.1111/jdv.19677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/16/2023] [Indexed: 06/28/2024]
Abstract
This review aimed at summarizing some of the key points that were discussed during the photoprotection session at the International Forum of Dermatology in 2022. This international conference was designed to address prominent topics of clinical dermatology in a holistic way, allowing to articulate multiple viewpoints. Therefore, this review does not claim to be exhaustive, but is instead intended to give an overview of recent developments and ongoing controversies in the field of photoprotection. Cumulative ultraviolet radiation (UVR) exposure is the major aetiological factor in the development of photoageing, photoimunosuppression and photocarcinogenesis. UVA (320-400 nm) penetrates into the dermis and damages DNA and other intracellular and acellular targets primarily by generating reactive oxygen species (ROS). It is the major contributor to photoageing, characterized by fine and coarse wrinkles, dyspigmentation and loss of elasticity. UVB (290-320 nm) is responsible for sunburns through direct damage to DNA by the formation of 6-4 cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. Both UVA and UVB exposure increase the risk of basal cell carcinoma, squamous cell carcinoma and melanoma. In recent years, visible light (VL; 400-700 nm) has also been implicated in the exacerbation of conditions aggravated by sun exposure such as hyperpigmentation and melasma. Photoprotection is a critical health strategy to reduce the deleterious effects of UVR and VL. Comprehensive photoprotection strategies include staying in the shade when outdoors, wearing photoprotective clothing including a wide-brimmed hat, and sunglasses, and the use of sunscreen. Due to the absorption of UV filters, the safety of sunscreens has been questioned. Newer sunscreens are becoming available with filters with absorption even beyond the UV spectrum, offering enhanced protection compared with older products. Prevention of photocarcinogenesis, sun-induced or sunlight-exacerbated hyperpigmentary conditions and drug-induced photosensitivity is an important reason for adopting comprehensive photoprotection strategies.
Collapse
Affiliation(s)
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Eggert Stockfleth
- Klinik für Dermatologie, Venerologie und Allergologie, St. Josef-Hospital, Ruhr-Universität Bochum, Bochum, Germany
| | - Vincent Sibaud
- Department of Oncodermatology, Claudius Regaud Institute and University Cancer Institute Toulouse Oncopole, Toulouse, France
| | - Ariadna Ortiz Brugués
- Department of Oncodermatology, Claudius Regaud Institute and University Cancer Institute Toulouse Oncopole, Toulouse, France
- Laboratoires Dermatologiques Avène, Pierre Fabre Dermo-Cosmétique, Les Cauquillous, Lavaur, France
| | - Markéta Saint Aroman
- Medical Direction Dermo-Cosmétique & Personal Care, Pierre Fabre Group, Toulouse, France
| |
Collapse
|
2
|
Lerche CM, Frederiksen NJS, Thorsteinsson IS, Køster B, Nybo L, Flouris AD, Heydenreich J, Philipsen PA, Hædersdal M, Wulf HC, Granborg JR. Urinary thymidine dimer excretion reflects personal ultraviolet radiation exposure levels. Photochem Photobiol Sci 2024; 23:919-930. [PMID: 38589652 DOI: 10.1007/s43630-024-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Exposure to ultraviolet radiation (UVR) leads to skin DNA damage, specifically in the form of cyclobutane pyrimidine dimers, with thymidine dimers being the most common. Quantifying these dimers can indicate the extent of DNA damage resulting from UVR exposure. Here, a new liquid chromatography-mass spectrometry (LC-MS) method was used to quantify thymidine dimers in the urine after a temporary increase in real-life UVR exposure. Healthy Danish volunteers (n = 27) experienced increased UVR exposure during a winter vacation. Individual exposure, assessed via personally worn electronic UVR dosimeters, revealed a mean exposure level of 32.9 standard erythema doses (SEDs) during the last week of vacation. Morning urine thymidine dimer concentrations were markedly elevated both 1 and 2 days post-vacation, and individual thymidine dimer levels correlated with UVR exposure during the last week of the vacation. The strongest correlation with erythema-weighted personal UVR exposure (Power model, r2 = 0.64, p < 0.001) was observed when both morning urine samples were combined to measure 48-h thymidine dimer excretion, whereas 24-h excretion based on a single sample provided a weaker correlation (Power model, r2 = 0.55, p < 0.001). Sex, age, and skin phototype had no significant effect on these correlations. For the first time, urinary thymidine dimer excretion was quantified by LC-MS to evaluate the effect of a temporary increase in personal UVR exposure in a real-life setting. The high sensitivity to elevated UVR exposure and correlation between urinary excretion and measured SED suggest that this approach may be used to quantify DNA damage and repair and to evaluate photoprevention strategies.
Collapse
Affiliation(s)
- Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark.
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| | | | | | - Brian Køster
- Department of Prevention and Information, Danish Cancer Society, 2100, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Jakob Heydenreich
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| | - Peter Alshede Philipsen
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| | - Merete Hædersdal
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| | - Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| | - Jonatan Riber Granborg
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| |
Collapse
|
3
|
Götzinger F, Hohl M, Lauder L, Millenaar D, Kunz M, Meyer MR, Ukena C, Lerche CM, Philipsen PA, Reichrath J, Böhm M, Mahfoud F. A randomized, placebo-controlled, trial to assess the photosensitizing, phototoxic and carcinogenic potential of hydrochlorothiazide in healthy volunteers. J Hypertens 2023; 41:1853-1862. [PMID: 37702559 DOI: 10.1097/hjh.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND AND AIMS Pharmacovigilance reports, associating hydrochlorothiazide (HCT) with skin cancer, resulted in a significant decrease of HCT prescriptions for hypertension and heart failure. Whether HCT exhibits phototoxic properties thereby causing skin cancer remains unknown. This study aimed to examine the photosensitizing, phototoxic and carcinogenic potential of HCT in a randomized, placebo-controlled, double-blind trial in vivo and also in vitro . METHODS The trial assigned 30 healthy, normotensive adult volunteers in a 2:1 ratio to either HCT 25 mg/day or placebo for 15 days. Photosensitivity of the skin with and without the effect of HCT treatment were assessed. Following whole-body ultraviolet A (UVA) and B (UVB, 311 nm) irradiation, phototoxic and carcinogenic reactions by measuring urinary excretion of pyrimidine dimers were evaluated. For the in-vitro studies, human keratinocytes (HaCaT) were incubated with HCT, irradiated with UVB, and analysed for markers of inflammation, apoptosis and carcinogenesis. RESULTS Skin photosensitivity following exposure to UVA and UVB remained unchanged from baseline to 15-day follow-up in both groups (UVA change HCT 0.0 J/cm 2 vs. placebo 0.0 J/cm 2 ; P = 0.99; UVB change HCT 0.0 J/cm 2 vs. placebo -0.2 J/cm 2 ; P = 0.06). Pyrimidine dimers were not detected in either group. In vitro , combination of HCT and UVB irradiation did not induce the expression of oxidative stress marker proteins, inflammatory proteins, apoptotic proteins or activation of oncoproteins. CONCLUSION HCT did not increase photosensitivity for UVA or UVB in healthy volunteers compared with placebo, and was not associated with phototoxic or carcinogenic reactions. In vitro , HCT was also not associated with phototoxicity or carcinogenesis (NCT04654312).
Collapse
Affiliation(s)
- Felix Götzinger
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Lucas Lauder
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Dominic Millenaar
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Michael Kunz
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Christian Ukena
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Philipsen
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg
| | - Jörg Reichrath
- Department of Adult and Pediatric Dermatology, Venereology, Allergology, Saarland University Hospital, Homburg, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital
| |
Collapse
|
4
|
Martin-Gorgojo A, Gilaberte Y, Nagore E. Vitamin D and Skin Cancer: An Epidemiological, Patient-Centered Update and Review. Nutrients 2021; 13:4292. [PMID: 34959844 PMCID: PMC8709188 DOI: 10.3390/nu13124292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The current vitamin D deficiency epidemic is accompanied by an increase in endemic skin cancer. There are still multiple controversies. This review aims to give practical recommendations regarding vitamin D among people at risk or with a personal history of skin cancer. METHODS Narrative review including human research articles published between 2011 and 2021, elaborated bearing in mind an epidemiological, patient-centered approach. RESULTS Ultraviolet (UV) exposure (neither artificial nor natural) is not the ideal source to synthesize vitamin D. There is conflicting epidemiological evidence regarding vitamin D, non-melanoma skin cancer (NMSC), and cutaneous melanoma (CMM), confounded by the effect of sun exposure and other factors. CONCLUSIONS Current evidence is controversial, and there are no widely applicable strategies. We propose three practical recommendations. Firstly, sun protection recommendations should be kept among people at risk or with a personal history of skin cancer. Secondly, vitamin D should preferably be sourced through diet. In patients with melanoma or at risk of cutaneous cancer, serum vitamin D checks are warranted to detect and avoid its insufficiency.
Collapse
Affiliation(s)
| | - Yolanda Gilaberte
- Dermatology Department, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain;
| | - Eduardo Nagore
- Dermatology Department, Universidad Catolica de Valencia, 46001 Valencia, Spain;
| |
Collapse
|
5
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Neville JJ, Palmieri T, Young AR. Physical Determinants of Vitamin D Photosynthesis: A Review. JBMR Plus 2021; 5:e10460. [PMID: 33553995 PMCID: PMC7839826 DOI: 10.1002/jbm4.10460] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Vitamin D synthesis by exposure of skin to solar ultraviolet radiation (UVR) provides the majority of this hormone that is essential for bone development and maintenance but may be important for many other health outcomes. This process, which is the only well-established benefit of solar UVR exposure, depends on many factors including genetics, age, health, and behavior. However, the most important factor is the quantity and quality of UVR reaching the skin. Vitamin D synthesis specifically requires ultraviolet B (UVB) radiation that is the minority component (<5%) of solar UVR. This waveband is also the most important for the adverse effects of solar exposure. The most obvious of which is sunburn (erythema), but UVB is also the main cause of DNA damage to the skin that is a prerequisite for most skin cancers. UVB at the Earth's surface depends on many physical and temporal factors such as latitude, altitude, season, and weather. Personal, cultural, and behavioral factors are also important. These include skin melanin, clothing, body surface area exposed, holiday habits, and sunscreen use. There is considerable disagreement in the literature about the role of some of these factors, possibly because some studies have been done by researchers with little understanding of photobiology. It can be argued that vitamin D supplementation obviates the need for solar exposure, but many studies have shown little benefit from this approach for a wide range of health outcomes. There is also increasing evidence that such exposure offers health benefits independently of vitamin D: the most important of which is blood-pressure reduction. In any case, public health advice must optimize risk versus benefit for solar exposure. It is fortunate that the individual UVB doses necessary for maintaining optimal vitamin D status are lower than those for sunburn, irrespective of skin melanin. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan J Neville
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| | - Tommaso Palmieri
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| | - Antony R Young
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| |
Collapse
|
7
|
Abstract
Purpose The goal of this review is to provide an update in the field of vitamin D, in particular, the role of vitamin D in non-skeletal health, the complexity of providing patient guidance regarding obtaining sufficient vitamin D, and the possible involvement of vitamin D in morbidity and mortality due to SARS-CoV-2 (COVID-19). Recent Findings In addition to bone health, vitamin D may play a role in innate immunity, cardiovascular disease, and asthma. Although rickets is often regarded as an historical disease of the early twentieth century, it appears to be making a comeback worldwide, including “first-world” countries. Broad-spectrum sunscreens (with high UVA filters) that prevent erythema are unlikely to compromise vitamin D status in healthy populations. Summary New attention is now focused on the role of vitamin D in a variety of diseases, and more individualized patient recommendation schemes are being considered that take into account more realistic and achievable goals for achieving sufficient vitamin D through diet, supplements, and sun behavior.
Collapse
|
8
|
Kim S, Carson KA, Chien AL. Prevalence and correlates of sun protections with sunburn and vitamin D deficiency in sun-sensitive individuals. J Eur Acad Dermatol Venereol 2020; 34:2664-2672. [PMID: 32453868 DOI: 10.1111/jdv.16681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sun sensitivity is an inherent risk factor for skin cancer. Sun protection is important in sun-sensitive individuals to reduce sunburns for skin cancer prevention. However, concerns have arose regarding the possible impact of sun protection on vitamin D deficiency. OBJECTIVE To examine the prevalence and correlates of sun-protective behaviours (staying in the shade, using sunscreen and wearing long sleeves) with sunburn and vitamin D deficiency in sun-sensitive individuals. METHODS This was a cross-sectional study of 2390 US non-Hispanic white adults aged 20-59 years in the National Health and Nutrition Examination Survey 2011-2014. Sun sensitivity was defined as self-reported tendency to severe sunburn when exposed to the sun for half an hour after months of non-sun exposure, and single serum 25(OH)D levels less than 50 nmol/L was determined as vitamin D deficiency. We calculated adjusted odds ratios (aORs) and 95% confidence intervals (95% CIs) using multivariable logistic regression taking into account the complex survey design. RESULTS Sun-sensitive individuals had higher odds of frequently staying in the shade (aOR = 3.08; 95% CI 2.19-4.33) and using sunscreen (aOR = 1.93; 1.44-2.59) but not associated with sun exposure time (aOR = 0.91; 0.62-1.32). Yet, sun-sensitive individuals had significantly higher likelihood of sunburns (aOR = 1.93; 1.45-2.55), and no increased likelihood of vitamin D deficiency (aOR = 1.15; 0.84-1.58). Among sun-sensitive individuals, being younger, male and spending more time outdoors were associated with increased odds of sunburns and the risk of sunburn was reduced with frequently staying in the shade and engaging in multimodal sun protections. CONCLUSION Sun-sensitive individuals more frequently used sun protection methods yet they still were significantly more likely to experience sunburns and the risk of vitamin D deficiency was not increased. Education on proper application of sunscreen combined with other sun-protective techniques is important to reduce sunburn in sun-sensitive populations.
Collapse
Affiliation(s)
- S Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - K A Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Pagels P, Wester U, Mårtensson F, Guban P, Raustorp A, Fröberg A, Söderström M, Boldemann C. Pupils' use of school outdoor play settings across seasons and its relation to sun exposure and physical activity. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:365-372. [PMID: 32187730 DOI: 10.1111/phpp.12558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/24/2020] [Accepted: 03/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Long outdoor stay may cause hazardous exposure to ultraviolet radiation (UVR) from the sun even at high latitudes as in Sweden (Spring to Autumn). On the other hand, long outdoor stay is a strong predictor of primary school children´s free mobility involving moderate to vigorous physical activity (MVPA). UV-protective outdoor environments enable long outdoor stay. We investigated the concurrent impact of different school outdoor play settings upon pupils´ sun exposure and levels of physical activity across different ages, genders, and seasons. METHOD During 1 week each in September, March, and May, UVR exposure and MVPA were measured in pupils aged 7-11 years. Erythemally effective UVR exposure was measured by polysulphone film dosimeters and MVPA by accelerometers. Schoolyard play was recorded on maps, and used areas defined as four play settings (fixed play equipment, paved surfaces, sport fields, and green settings), categorized by season and gender. RESULTS During the academic year, sport fields yielded the highest UVR exposures and generated most time in MVPA. In March, time outdoors and minutes in MVPA dropped and UVR exposures were suberythemal at all play settings. In May, green settings and fixed play equipment close to greenery promoted MVPA and protected from solar overexposure during long outdoor stays. CONCLUSION More outdoor activities in early spring are recommended. In May, greenery attractive for play could protect against overexposure to UVR and stimulate both girls and boys to vigorous play.
Collapse
Affiliation(s)
- Peter Pagels
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden.,Department of Sport Sciences, Linneaus University, Kalmar, Sweden
| | - Ulf Wester
- Swedish Radiation Safety Authority, Stockholm, Sweden
| | - Fredrika Mårtensson
- Department of Work science, Business Economics and Environmental Psychology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Peter Guban
- Center for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Anders Raustorp
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Fröberg
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Söderström
- Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Sciences in Lund, University of Lund, Lund, Sweden
| | - Cecilia Boldemann
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet. Nutrients 2019; 11:nu11112682. [PMID: 31698703 PMCID: PMC6893762 DOI: 10.3390/nu11112682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
During the last decade, our scientific knowledge of the pleiotropic biological effects of vitamin D metabolites and their relevance to human health has expanded widely. Beyond the well-known key role of vitamin D in calcium homeostasis and bone health, it has been shown that vitamin D deficiency is associated with a broad variety of independent diseases, including several types of cancer, and with increased overall mortality. Moreover, recent findings have demonstrated biological effects of the vitamin D endocrine system that are not mediated via activation of the classical nuclear vitamin D receptor (VDR) by binding with high affinity to its corresponding ligand, the biologically active vitamin D metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D). In contrast, many of these new biological effects of vitamin D compounds, including regulation of the circadian clock and many metabolic functions, are mediated by other vitamin D metabolites, including 20-hydroxyvitamin D and 20,23-dihydroxyvitamin D, and involve their binding to the aryl hydrocarbon receptor (AhR) and retinoid-orphan receptor (ROR). In most populations, including the German population, UVB-induced cutaneous vitamin D production is the main source for fulfilling the human body’s requirements of vitamin D. However, this causes a dilemma because solar or artificial UVR exposure is associated with skin cancer risk. In addition to UVB-induced vitamin D production in skin, in humans, there are two other possible sources of vitamin D: from diet and supplements. However, only a few natural foods contain substantial amounts of vitamin D, and in most populations, the dietary source of vitamin D cannot fulfill the body´s requirements. Because an increasing body of evidence has convincingly demonstrated that vitamin D deficiency is very common worldwide, it is the aim of this paper to (i) give an update of the vitamin D status in a population with a western diet, namely, the German population, and to (ii) develop strategies to optimize the vitamin D supply that consider both the advantages as well as the disadvantages/risks of different approaches, including increasing vitamin D status by dietary intake, by supplements, or by UVB-induced cutaneous synthesis of vitamin D.
Collapse
|
11
|
Passeron T, Bouillon R, Callender V, Cestari T, Diepgen TL, Green AC, van der Pols JC, Bernard BA, Ly F, Bernerd F, Marrot L, Nielsen M, Verschoore M, Jablonski NG, Young AR. Sunscreen photoprotection and vitamin D status. Br J Dermatol 2019; 181:916-931. [PMID: 31069788 PMCID: PMC6899926 DOI: 10.1111/bjd.17992] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Background Global concern about vitamin D deficiency has fuelled debates on photoprotection and the importance of solar exposure to meet vitamin D requirements. Objectives To review the published evidence to reach a consensus on the influence of photoprotection by sunscreens on vitamin D status, considering other relevant factors. Methods An international panel of 13 experts in endocrinology, dermatology, photobiology, epidemiology and biological anthropology reviewed the literature prior to a 1‐day meeting in June 2017, during which the evidence was discussed. Methods of assessment and determining factors of vitamin D status, and public health perspectives were examined and consequences of sun exposure and the effects of photoprotection were assessed. Results A serum level of ≥ 50 nmol L−1 25(OH)D is a target for all individuals. Broad‐spectrum sunscreens that prevent erythema are unlikely to compromise vitamin D status in healthy populations. Vitamin D screening should be restricted to those at risk of hypovitaminosis, such as patients with photosensitivity disorders, who require rigorous photoprotection. Screening and supplementation are advised for this group. Conclusions Sunscreen use for daily and recreational photoprotection does not compromise vitamin D synthesis, even when applied under optimal conditions. What's already known about this topic? Knowledge of the relationship between solar exposure behaviour, sunscreen use and vitamin D is important for public health but there is confusion about optimal vitamin D status and the safest way to achieve this. Practical recommendations on the potential impact of daily and/or recreational sunscreens on vitamin D status are lacking for healthy people.
What does this study add? Judicious use of daily broad‐spectrum sunscreens with high ultraviolet (UV) A protection will not compromise vitamin D status in healthy people. However, photoprotection strategies for patients with photosensitivity disorders that include high sun‐protection factor sunscreens with high UVA protection, along with protective clothing and shade‐seeking behaviour are likely to compromise vitamin D status. Screening for vitamin D status and supplementation are recommended in patients with photosensitivity disorders.
Linked Comment: https://doi.org/10.1111/bjd.18126. https://doi.org/10.1111/bjd.18494 available online
Collapse
Affiliation(s)
- T Passeron
- Department of Dermatology, CHU Nice, Université Côte d'Azur, CHU Nice, 151, route de Ginestière, 06200, Nice, France.,C3M, INSERM U1065 Université Côte d'Azur, 151, route de Ginestière, 06200, Nice, France
| | - R Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Gasthuisberg, 3000, Leuven, Belgium
| | - V Callender
- Callender Dermatology & Cosmetic Center, 12200 Annapolis Road, Suite 315, Glenn Dale, MD, 20769, U.S.A
| | - T Cestari
- Federal University of Rio Grande do Sul, Hospital de Clinicas de Porto Alegre, Ramiro Barcellos 2350 zone 13, Porto Alegre, RS, 90035-903, Brazil
| | - T L Diepgen
- Department of Clinical Social Medicine, University of Heidelberg, Voßstr. 2, 69115, Heidelberg, Germany
| | - A C Green
- Cancer and Population Studies Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.,CRUK Manchester Institute and Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9NQ, U.K
| | - J C van der Pols
- School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - B A Bernard
- L'Oréal R&I, Scientific Directorate, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | - F Ly
- Faculty of Medicine, Pharmacy and Odontology, University Cheikh Anta Diop of Dakar, BP 5825, Dakar, Senegal
| | - F Bernerd
- L'Oréal R&I, 1 Avenue Eugène Schueller, 93600, Aulnay-sous-bois, France
| | - L Marrot
- L'Oréal R&I, 1 Avenue Eugène Schueller, 93600, Aulnay-sous-bois, France
| | - M Nielsen
- L'Oréal R&I, Scientific Directorate, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | - M Verschoore
- L'Oréal R&I, Scientific Directorate, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | - N G Jablonski
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA, 16802, U.S.A
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, U.K
| |
Collapse
|
12
|
Young AR, Narbutt J, Harrison GI, Lawrence KP, Bell M, O'Connor C, Olsen P, Grys K, Baczynska KA, Rogowski-Tylman M, Wulf HC, Lesiak A, Philipsen PA. Optimal sunscreen use, during a sun holiday with a very high ultraviolet index, allows vitamin D synthesis without sunburn. Br J Dermatol 2019; 181:1052-1062. [PMID: 31069787 PMCID: PMC6899952 DOI: 10.1111/bjd.17888] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
Background Sunlight contains ultraviolet (UV)A and UVB radiation. UVB is essential for vitamin D synthesis but is the main cause of sunburn and skin cancer. Sunscreen use is advocated to reduce the sun's adverse effects but may compromise vitamin D status. Objectives To assess the ability of two intervention sunscreens to inhibit vitamin D synthesis during a week‐long sun holiday. Methods The impact of sunscreens on vitamin D status was studied during a 1‐week sun holiday in Tenerife (28° N). Comparisons were made between two formulations, each with a sun protection factor (SPF) of 15. The UVA‐protection factor (PF) was low in one case and high in the other. Healthy Polish volunteers (n = 20 per group) were given the sunscreens and advised on the correct application. Comparisons were also made with discretionary sunscreen use (n = 22) and nonholiday groups (51·8° N, n = 17). Sunscreen use in the intervention groups was measured. Behaviour, UV radiation exposure, clothing cover and sunburn were monitored. Serum 25‐hydroxyvitamin D3 [25(OH)D3] was assessed by high‐performance liquid chromatography–tandem mass spectrometry. Results Use of intervention sunscreens was the same (P = 0·60), and both equally inhibited sunburn, which was present in the discretionary use group. There was an increase (P < 0·001) in mean ± SD 25(OH)D3 (28·0 ± 16·5 nmol L−1) in the discretionary use group. The high and low UVA‐PF sunscreen groups showed statistically significant increases (P < 0·001) of 19·0 ± 14·2 and 13·0 ± 11·4 nmol L−1 25(OH)D3, respectively with P = 0·022 for difference between the intervention sunscreens. The nonholiday group showed a fall (P = 0·08) of 2·5 ± 5·6 nmol L−1 25(OH)D3. Conclusions Sunscreens may be used to prevent sunburn yet allow vitamin D synthesis. A high UVA‐PF sunscreen enables significantly higher vitamin D synthesis than a low UVA‐PF sunscreen because the former, by default, transmits more UVB than the latter. What's already known about this topic? Action spectra (wavelength dependence) for erythema and the cutaneous formation of vitamin D overlap considerably in the ultraviolet (UV)B region. Theoretically, sunscreens that inhibit erythema should also inhibit vitamin D synthesis. To date, studies on the inhibitory effects of sunscreens on vitamin D synthesis have given conflicting results, possibly, in part, because people typically apply sunscreen suboptimally. Many studies have design flaws.
What does this study add? Sunscreens (sun protection factor, SPF 15) applied at sufficient thickness to inhibit sunburn during a week‐long holiday with a very high UV index still allow a highly significant improvement of serum 25‐hydroxyvitamin D3 concentration. An SPF 15 formulation with high UVA protection enables better vitamin D synthesis than a low UVA protection product. The former allows more UVB transmission.
Linked Editorial: https://doi.org/10.1111/bjd.18273. https://doi.org/10.1111/bjd.18492 available online https://www.bjdonline.com/article/optimal-sunscreen-use-during-a-sun-holiday-with-a-very-high-ultraviolet-index-allows-vitamin-d-synthesis-without-sunburn/
Collapse
Affiliation(s)
- A R Young
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - J Narbutt
- Medical University of Łódź, Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Łódź, 90-647, Poland
| | - G I Harrison
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K P Lawrence
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - M Bell
- Walgreens Boots Alliance Inc., Nottingham, NG90 5EF, U.K
| | - C O'Connor
- Walgreens Boots Alliance Inc., Nottingham, NG90 5EF, U.K
| | - P Olsen
- Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| | - K Grys
- King's College London, St John's Institute of Dermatology, London, SE1 9RT, U.K
| | - K A Baczynska
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire, OX11 0RQ, U.K
| | | | - H C Wulf
- Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| | - A Lesiak
- Medical University of Łódź, Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Łódź, 90-647, Poland
| | - P A Philipsen
- Bispebjerg Hospital, Department of Dermatological Research, Copenhagen, 2400, Denmark
| |
Collapse
|
13
|
Mendes MM, Darling AL, Hart KH, Morse S, Murphy RJ, Lanham-New SA. Impact of high latitude, urban living and ethnicity on 25-hydroxyvitamin D status: A need for multidisciplinary action? J Steroid Biochem Mol Biol 2019; 188:95-102. [PMID: 30610914 DOI: 10.1016/j.jsbmb.2018.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022]
Abstract
The effects of urban living on health are becoming increasingly important, due to an increasing global population residing in urban areas. Concomitantly, due to immigration, there is a growing number of ethnic minority individuals (African, Asian or Middle Eastern descent) living in westernised Higher Latitude Countries (HLC) (e.g. Europe, Canada, New Zealand). Of concern is the fact that there is already a clear vitamin D deficiency epidemic in HLC, a problem which is likely to grow as the ethnic minority population in these countries increases. This is because 25-hydroxyvitamin D (25(OH)D) status of ethnic groups is significantly lower compared to native populations. Environmental factors contribute to a high prevalence of vitamin D deficiency in HLC, particularly during the winter months when there is no sunlight of appropriate wavelength for vitamin D synthesis via the skin. Also, climatic factors such as cloud cover may reduce vitamin D status even in the summer. This may be further worsened by factors related to urban living, including air pollution, which reduces UVB exposure to the skin, and less occupational sun exposure (may vary by individual HLC). Tall building height may reduce sun exposure by making areas more shaded. In addition, there are ethnicity-specific factors which further worsen vitamin D status in HLC urban dwellers, such as low dietary intake of vitamin D from foods, lower production of vitamin D in the skin due to increased melanin and reduced skin exposure to UVB due to cultural dress style and sun avoidance. A multidisciplinary approach applying knowledge from engineering, skin photobiology, nutrition, town planning and social science is required to prevent vitamin D deficiency in urban areas. Such an approach could include reduction of air pollution, modification of sun exposure advice to emphasise spending time each day in non-shaded urban areas (e.g. parks, away from tall buildings), and advice to ethnic minority groups to increase sun exposure, take vitamin D supplements and/or increase consumption of vitamin D rich foods in a way that is safe and culturally acceptable. This review hopes to stimulate further research to assess the impact of high latitude, urban environment and ethnicity on the risk of vitamin D deficiency.
Collapse
Affiliation(s)
- Marcela M Mendes
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK.
| | - Andrea L Darling
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK.
| | - Kathryn H Hart
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK.
| | - Stephen Morse
- Centre for Environment and Sustainability, University of Surrey, UK.
| | - Richard J Murphy
- Centre for Environment and Sustainability, University of Surrey, UK.
| | - Susan A Lanham-New
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, UK.
| |
Collapse
|
14
|
Lucas RM, Yazar S, Young AR, Norval M, de Gruijl FR, Takizawa Y, Rhodes LE, Sinclair CA, Neale RE. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem Photobiol Sci 2019; 18:641-680. [PMID: 30810559 DOI: 10.1039/c8pp90060d] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Montreal Protocol has limited increases in the UV-B (280-315 nm) radiation reaching the Earth's surface as a result of depletion of stratospheric ozone. Nevertheless, the incidence of skin cancers continues to increase in most light-skinned populations, probably due mainly to risky sun exposure behaviour. In locations with strong sun protection programs of long duration, incidence is now reducing in younger age groups. Changes in the epidemiology of UV-induced eye diseases are less clear, due to a lack of data. Exposure to UV radiation plays a role in the development of cataracts, pterygium and possibly age-related macular degeneration; these are major causes of visual impairment world-wide. Photodermatoses and phototoxic reactions to drugs are not uncommon; management of the latter includes recognition of the risks by the prescribing physician. Exposure to UV radiation has benefits for health through the production of vitamin D in the skin and modulation of immune function. The latter has benefits for skin diseases such as psoriasis and possibly for systemic autoimmune diseases such as multiple sclerosis. The health risks of sun exposure can be mitigated through appropriate sun protection, such as clothing with both good UV-blocking characteristics and adequate skin coverage, sunglasses, shade, and sunscreen. New sunscreen preparations provide protection against a broader spectrum of solar radiation, but it is not clear that this has benefits for health. Gaps in knowledge make it difficult to derive evidence-based sun protection advice that balances the risks and benefits of sun exposure.
Collapse
Affiliation(s)
- R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia. and Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - S Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - M Norval
- Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | - F R de Gruijl
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y Takizawa
- Akita University School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - L E Rhodes
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - R E Neale
- QIMR Berghofer Institute of Medical Research, Herston, Brisbane, Australia and School of Public Health, University of Queensland, Australia
| |
Collapse
|
15
|
Webb A. Assessing benefits and risks of holiday sun exposure in children. Br J Dermatol 2018; 179:822-823. [DOI: 10.1111/bjd.16910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- A.R. Webb
- Centre for Atmospheric Sciences; School of Earth and Environmental Sciences; University of Manchester; Manchester U.K
| |
Collapse
|