1
|
Johnson N, Qi B, Wen J, Du B, Banerjee S. KLHL24 associated cardiomyopathy: Gene function to clinical management. Gene 2025; 939:149185. [PMID: 39708934 DOI: 10.1016/j.gene.2024.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND KLHL24 (Kelch-like protein 24) is a significant component of the ubiquitin-proteasome system (UPS), involved in regulating protein turnover through targeted ubiquitination and degradation. Germline mutations in KLHL24 gene have been known to cause Epidermolysis Bullosa Simplex characterized by skin fragility but has recently been found to cause Cardiomyopathy. MAIN BODY Various cardiomyopathies, including hypertrophic cardiomyopathy and dilated cardiomyopathy, leading to abnormal protein degradation and affecting the stability and function of essential cardiac proteins which finally results into structural and functional abnormalities in cardiac muscle. In this review, in order to understand the disease association of germline mutations of KLHL24, we summarize all the studies performed with KLHL24 gene including studies from 2016 when KLHL24 was first identified to be associated with epidermolysis bullosa simplex till the recent studies in 2024 by using keywords such as KLHL24 gene, hypertrophic cardiomyopathy, dilated cardiomyopathy and epidermolysis bullosa simplex. Furthermore, we explored the proposed molecular mechanisms and pathophysiologies of KLHL24 associated diseases. Patients with KLHL24 mutations were usually presented with variable clinical symptoms. The main clinical presentations have been cutaneous lesions, cardiac symptoms associated with cardiomyopathies and there have been reports of skeletal muscle weakness and neurological symptoms as well. Current treatments focus on managing clinical symptoms and preventing complications through medications, lifestyle changes, and surgical interventions. In addition, researches have also been conducted cell culture based in vitro studies for reducing the clinical symptoms of KLHL24 associated diseases. However, currently there are no specific clinical trials going on regarding the therapeutic strategies among patients with KLHL24 mutations. Understanding the role of KLHL24 in cardiomyopathies is very important for developing targeted diagnostic approach with therapeutic strategies. CONCLUSION This review emphasizes the importance of KLHL24 mutations as a newly recognized cause of cardiomyopathy, paving the way for improved clinical diagnosis, targeted therapies, and ultimately, for better patient outcomes.
Collapse
Affiliation(s)
- Neil Johnson
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China; Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Baardman R, Lemmink HH, Yenamandra VK, Commandeur‐Jan SZ, Viel M, Kooi KA, Diercks GFH, Meijer R, van Geel M, Scheffer H, Sinke RJ, Sikkema‐Raddatz B, Bolling MC, van den Akker PC. Evolution of genome diagnostics in epidermolysis bullosa: Unveiling the power of next-generation sequencing. J Eur Acad Dermatol Venereol 2025; 39:154-160. [PMID: 38465480 PMCID: PMC11664470 DOI: 10.1111/jdv.19938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Genome diagnostics is considered gold standard diagnostics for epidermolysis bullosa (EB), a phenotypically and genetically heterogeneous group of rare disorders characterized by blistering and wounding of mucocutaneous tissues. EB is caused by pathogenic variants in genes encoding proteins of the dermo-epidermal junction. Accurate genetic diagnosis of EB is crucial for prognostication, counselling and precision-medicine. Genome diagnostics for EB started in 1991 with the introduction of Sanger sequencing (SS), analysing one gene at a time. In 2013, SS was superseded by next-generation sequencing (NGS), that allow for high-throughput sequencing of multiple genes in parallel. Several studies have shown a beneficial role for NGS in EB diagnostics, but its true benefit has not been quantified. OBJECTIVES To determine the benefit of NGS in EB by systematically evaluating the performance of different genome diagnostics used over time based on robust data from the Dutch EB Registry. METHODS The diagnostic performances of SS and NGS were systematically evaluated in a retrospective observational study including all index cases with a clinical diagnosis of EB in whom genome diagnostics was performed between 01 January 1994 and 01 January 2022 (n = 308), registered at the Dutch EB Expertise Centre. RESULTS Over time, a genetic diagnosis was made in 289/308 (94%) EB cases. The diagnostic yield increased from 89% (SS) to 95% (NGS). Most importantly, NGS significantly reduced diagnostic turnaround time (39 days vs. 211 days, p < 0.001). The likelihood of detecting variants of uncertain significance and additional findings increased from 5% and 1% (SS) to 22% and 13% (NGS) respectively. CONCLUSIONS Our study quantifies the benefit of NGS-based methods and demonstrate they have had a major impact on EB diagnostics through an increased diagnostic yield and a dramatically decreased turnaround time (39 days). Although our diagnostic yield is high (95%), further improvement of genome diagnostics is urgently needed to provide a genetic diagnosis in all EB patients.
Collapse
Affiliation(s)
- R. Baardman
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - H. H. Lemmink
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - V. K. Yenamandra
- Academy of Scientific and Innovative Research South CampusCSIR‐Institute of Genomics and Integrative Biology (IGIB)New DelhiIndia
| | - S. Z. Commandeur‐Jan
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - M. Viel
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - K. A. Kooi
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - G. F. H. Diercks
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Pathology, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - R. Meijer
- Department of Genetics, University Medical Center NijmegenUniversity of NijmegenNijmegenThe Netherlands
| | - M. van Geel
- Department of Genetics, Maastricht University Medical CenterUniversity of MaastrichtMaastrichtThe Netherlands
| | - H. Scheffer
- Department of Genetics, University Medical Center NijmegenUniversity of NijmegenNijmegenThe Netherlands
| | - R. J. Sinke
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - B. Sikkema‐Raddatz
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - M. C. Bolling
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - P. C. van den Akker
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and GenodermatosesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024; 65:705-726. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Phillips CL, Faridounnia M, Battaglia RA, Evangelista BA, Cohen TJ, Opal P, Bouldin TW, Armao D, Snider NT. Gigaxonin, mutated in Giant Axonal Neuropathy, interacts with TDP-43 and other RNA binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611033. [PMID: 39282431 PMCID: PMC11398400 DOI: 10.1101/2024.09.03.611033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Giant Axonal Neuropathy (GAN) is a neurodegenerative disease caused by loss-of-function mutations in the KLHL16 gene, encoding the cytoskeleton regulator gigaxonin. In the absence of functional gigaxonin, intermediate filament (IF) proteins accumulate in neurons and other cell types due to impaired turnover and transport. GAN neurons exhibit distended, swollen axons and distal axonal degeneration, but the mechanisms behind this selective neuronal vulnerability are unknown. Our objective was to identify novel gigaxonin interactors pertinent to GAN neurons. Unbiased proteomics revealed a statistically significant predominance of RNA-binding proteins (RBPs) within the soluble gigaxonin interactome and among differentially-expressed proteins in iPSC-neuron progenitors from a patient with classic GAN. Among the identified RBPs was TAR DNA-binding protein 43 (TDP-43), which associated with the gigaxonin protein and its mRNA transcript. TDP-43 co-localized within large axonal neurofilament IFs aggregates in iPSC-motor neurons derived from a GAN patient with the 'axonal CMT-plus' disease phenotype. Our results implicate RBP dysfunction as a potential underappreciated contributor to GAN-related neurodegeneration.
Collapse
Affiliation(s)
- Cassandra L Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | | | - Todd J Cohen
- Department of Neurology, University of North Carolina at Chapel Hill
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL
| | - Thomas W Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
- Department of Radiology, University of North Carolina at Chapel Hill
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
5
|
Zhou Z, Huang X, Tang X, Chen W, Chen Q, Zhang C, Li Y, Zhao D, Zheng Z, Hu S, Wang J, Kullo IJ, Ding K. Heterozygous nonsense variants in laminin subunit 3α resulting in Ebstein's anomaly. HGG ADVANCES 2023; 4:100227. [PMID: 37635785 PMCID: PMC10450520 DOI: 10.1016/j.xhgg.2023.100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Ebstein's anomaly is a rare congenital heart disease characterized by tricuspid valve downward displacement and is associated with additional cardiac phenotypes such as left ventricle non-compaction. The genetic basis of Ebstein's anomaly has yet to be fully elucidated, although several genes (e.g., NKX2-5, MYH7, TPM1, and FLNA) may contribute to Ebstein's anomaly. Here, in two Ebstein's anomaly families (a three-generation family and a trio), we identified independent heterozygous nonsense variants in laminin subunit 3 α (LAMA3), cosegregated with phenotypes in families with reduced penetrance. Furthermore, knocking out Lama3 in mice revealed that haploinsufficiency of Lama3 led to Ebstein's malformation of the tricuspid valve and an abnormal basement membrane structure. In conclusion, we identified a novel gene-disease association of LAMA3 implicated in Ebstein's anomaly, and the findings extended our understanding of the role of the extracellular matrix in Ebstein's anomaly etiology.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Xumei Huang
- Department of Cardiovascular Diseases, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xia Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Wen Chen
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Qianlong Chen
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Chaohui Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yuxin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhe Zheng
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Shengshou Hu
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jikui Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Keyue Ding
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|
7
|
Cui J, Zhao Q, Song Z, Chen Z, Zeng X, Wang C, Lin Z, Wang F, Yang Y. KLHL24-Mediated Hair Follicle Stem Cells Structural Disruption Causes Alopecia. J Invest Dermatol 2022; 142:2079-2087.e8. [PMID: 35066002 DOI: 10.1016/j.jid.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
KLHL24 is an E3 ubiquitin ligase. Variants in the start codon of KLHL24 result in truncated KLHL24 protein lacking the initial 28 amino acids (KLHL24-ΔN28). KLHL24-ΔN28 is more stable than wild-type KLHL24 and causes excessive degradation of keratin 14, leading to epidermolysis bullosa. Patients with KLHL24-related epidermolysis bullosa usually develop alopecia, which is uncommon in patients with epidermolysis bullosa. The mechanisms by which KLHL24 variants cause alopecia is currently unclear. In this study, we show that KLHL24 regulates hair maintenance by mediating the stability of keratin 15. Using a Klhl24c.3G>T knock-in mouse model, we identify that KLHL24-ΔN28 disrupts the structure of hair follicle stem cells (HFSCs). Destructed HFSCs cannot anchor hairs and cause premature hair loss. Long-term destruction of HFSCs causes their exhaustion and hair follicle degeneration. Mechanically, KLHL24 mediates the ubiquitination and proteasomal degradation of keratin 15, an intermediate filament composing the HFSC cytoskeleton network. Keratin 15 is dramatically decreased in the skin of Klhl24c.3G>T mice and in patients with KLHL24-related epidermolysis bullosa. These findings show that KLHL24 plays a role in hair maintenance by regulating the cytoskeleton structure of HFSCs and highlight the importance of the ubiquitin‒proteasome system in the stability of HFSCs.
Collapse
Affiliation(s)
- Jun Cui
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Qian Zhao
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhongya Song
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhiming Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xin Zeng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, China
| | - Yong Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Epidermolysis Bullosa—A Different Genetic Approach in Correlation with Genetic Heterogeneity. Diagnostics (Basel) 2022; 12:diagnostics12061325. [PMID: 35741135 PMCID: PMC9222206 DOI: 10.3390/diagnostics12061325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epidermolysis bullosa is a heterogeneous group of rare genetic disorders characterized by mucocutaneous fragility and blister formation after minor friction or trauma. There are four major epidermolysis bullosa types based on the ultrastructural level of tissue cleavage: simplex, junctional, dystrophic, and Kindler epidermolysis bullosa. They are caused by mutations in genes that encode the proteins that are part of the hemidesmosomes and focal adhesion complex. Some of these disorders can be associated with extracutaneous manifestations, which are sometimes fatal. They are inherited in an autosomal recessive or autosomal dominant manner. This review is focused on the phenomena of heterogeneity (locus, allelic, mutational, and clinical) in epidermolysis bullosa, and on the correlation genotype–phenotype.
Collapse
|
9
|
Harvey N, Youssefian L, Saeidian AH, Vahidnezhad H, Uitto J. Pathomechanisms of epidermolysis bullosa: Beyond structural proteins. Matrix Biol 2022; 110:91-105. [DOI: 10.1016/j.matbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
10
|
Vermeer MCSC, Sillje HHW, Pas HH, Andrei D, van der Meer P, Bolling MC. K14 degradation and ageing in epidermolysis bullosa simplex due to KLHL24 gain-of-function mutations. J Invest Dermatol 2022; 142:2271-2274.e6. [PMID: 35031308 DOI: 10.1016/j.jid.2021.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Mathilde C S C Vermeer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Herman H W Sillje
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Hendri H Pas
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Hanzeplein 1, 9713HE Groningen, The Netherlands
| | - Daniela Andrei
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Hanzeplein 1, 9713HE Groningen, The Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Maria C Bolling
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Hanzeplein 1, 9713HE Groningen, The Netherlands.
| |
Collapse
|
11
|
Care of the Patient with Epidermolysis Bullosa. CURRENT ANESTHESIOLOGY REPORTS 2022. [DOI: 10.1007/s40140-021-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Identifying Epidermolysis Bullosa Patient Needs and Perceived Treatment Benefits: An Explorative Study Using the Patient Benefit Index. J Clin Med 2021; 10:jcm10245836. [PMID: 34945131 PMCID: PMC8709493 DOI: 10.3390/jcm10245836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
Epidermolysis bullosa (EB) is a genetic blistering skin condition for which no cure exists. Symptom alleviation and quality of life are therefore central to EB care. This study aimed to gain insight into EB patient needs and benefits from current clinical care. Two questionnaires were administered cross-sectionally to adult EB patients at the Dutch expertise centre for blistering diseases. Patient needs and benefits were analyzed using the patient benefit index survey (PBI-S). Ancillary data were compiled pertaining to self-reported EB severity, pain and pruritus, as well as current and previous treatments. In total, 104 participants were included (response rate 69.8%). Sixty-eight participants comprised the analyzed cohort (n = 36 omitted from analysis). The needs given the highest importance were to get better skin quickly (64.7%) and to be healed of all skin alterations (61.8%). A positive correlation between pain and EB severity and the importance of most needs was observed. Minimal clinically important differences within the PBI-S, relating to reported benefits from clinical care, were reported by 60.3% of the cohort. This study highlights a discrepancy between patient needs and feasible treatment outcomes. Utilizing the PBI-S in conjunction with well-established multidisciplinary care may catalyze the process of tailoring treatments to the needs of individual patients.
Collapse
|
13
|
Logli E, Marzuolo E, D'Agostino M, Conti LA, Lena AM, Diociaiuti A, Dellambra E, Has C, Cianfanelli V, Zambruno G, El Hachem M, Magenta A, Candi E, Condorelli AG. Proteasome-mediated degradation of keratins 7, 8, 17 and 18 by mutant KLHL24 in a foetal keratinocyte model: Novel insight in congenital skin defects and fragility of epidermolysis bullosa simplex with cardiomyopathy. Hum Mol Genet 2021; 31:1308-1324. [PMID: 34740256 PMCID: PMC9029237 DOI: 10.1093/hmg/ddab318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients’ keratinocyte clonogenicity impairment.
Collapse
Affiliation(s)
- Elena Logli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco D'Agostino
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | | | - Cristina Has
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
14
|
Xu X, Zhao J, Wang C, Qu X, Ran M, Ye F, Shen M, Wang K, Zhang Q. Case Report: De novo KLHL24 Gene Pathogenic Variants in Chinese Twin Boys With Epidermolysis Bullosa Simplex. Front Genet 2021; 12:729628. [PMID: 34804116 PMCID: PMC8602111 DOI: 10.3389/fgene.2021.729628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The aim of this study was to determine the molecular etiology and clinical manifestations of a pair of Chinese twins affected with epidermolysis bullosa simplex. Pediatricians should pay attention to the early genetic diagnosis of this disease. Methods: Histopathological examination of HE-stained skin, electron microscopy of biopsied normal skin, and whole-exome sequencing was performed to assess pathogenicity and conservation of detected mutations. Two years later, the cutaneous and extracutaneous manifestations of the twins were comprehensively evaluated. Results: A de novo pathogenic variant c.2T>C (p.M1T) in KLHL24 (NM_017,644) was identified in both twins. The characteristics of extensive skin defects on the extremities at birth and the tendency to lesson with increasing age were confirmed. No positive sensitive markers, such as B-type natriuretic peptide, cardiac troponin I, for cardiac dysfunction were detected. Conclusions: The de novo pathogenic variants c.2T>C (p.M1T) in KLHL24 (NM_017,644) contributes to the development of epidermolysis bullosa. Genetic diagnosis at birth or early infancy can better predict the disease prognosis and guide the treatment.
Collapse
Affiliation(s)
- Xiaojing Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Juan Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxuan Qu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Menglong Ran
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Ming Shen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Vermeer MC, Bolling MC, Bliley JM, Gomez KFA, Pavez-Giani MG, Kramer D, Romero-Herrera PH, Westenbrink BD, Diercks GF, van den Berg MP, Feinberg AW, Silljé HH, van der Meer P. Gain-of-function mutation in ubiquitin-ligase KLHL24 causes desmin degradation and dilatation in hiPSC-derived engineered heart tissues. J Clin Invest 2021; 131:140615. [PMID: 34292882 PMCID: PMC8409593 DOI: 10.1172/jci140615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
The start codon c.1A>G mutation in KLHL24, encoding ubiquitin-ligase KLHL24, results in the loss of 28 N-terminal amino acids (KLHL24-ΔN28) by skipping the initial start codon. In skin, KLHL24-ΔN28 leads to gain of function, excessively targeting intermediate filament keratin-14 for proteasomal degradation, ultimately causing epidermolysis bullosa simplex (EBS). The majority of these EBS-patients are also diagnosed with dilated cardiomyopathy (DCM), but the pathological mechanism in the heart is unknown. As desmin is the cardiac homologue of keratin-14, we hypothesized that KLHL24-ΔN28 leads to excessive degradation of desmin, resulting in DCM. Dynamically loaded engineered heart tissues (dyn-EHTs) were generated from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes from two patients and three (non)familial controls. Ten-fold lower desmin protein levels were observed in patient-derived dyn-EHTs, in line with diminished desmin levels detected in patients' explanted heart. This was accompanied by tissue dilatation, impaired mitochondrial function, decreased force values and increased cardiomyocyte stress. HEK293 transfection studies confirmed KLHL24-mediated desmin degradation. KLHL24 RNA interference or direct desmin overexpression recovered desmin protein levels, restoring morphology and function in patient-derived dyn-EHTs. To conclude, presence of KLHL24-ΔN28 in cardiomyocytes leads to excessive degradation of desmin, affecting tissue morphology and function, that can be prevented by restoring desmin protein levels.
Collapse
Affiliation(s)
| | - Maria C. Bolling
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline M. Bliley
- Department of Biomedical Engineering, Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | | - Duco Kramer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Gilles F.H. Diercks
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Adam W. Feinberg
- Department of Biomedical Engineering, Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
16
|
Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol 2020; 95:551-569. [PMID: 32732072 PMCID: PMC7563003 DOI: 10.1016/j.abd.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inherited epidermolysis bullosa is a group of genetic diseases characterized by skin fragility and blistering on the skin and mucous membranes in response to minimal trauma. Epidermolysis bullosa is clinically and genetically very heterogeneous, being classified into four main types according to the layer of skin in which blistering occurs: epidermolysis bullosa simplex (intraepidermal), junctional epidermolysis bullosa (within the lamina lucida of the basement membrane), dystrophic epidermolysis bullosa (below the basement membrane), and Kindler epidermolysis bullosa (mixed skin cleavage pattern). Furthermore, epidermolysis bullosa is stratified into several subtypes, which consider the clinical characteristics, the distribution of the blisters, and the severity of cutaneous and extracutaneous signs. Pathogenic variants in at least 16 genes that encode proteins essential for the integrity and adhesion of skin layers have already been associated with different subtypes of epidermolysis bullosa. The marked heterogeneity of the disease, which includes phenotypes with a broad spectrum of severity and many causal genes, hinders its classification and diagnosis. For this reason, dermatologists and geneticists regularly review and update the classification criteria. This review aimed to update the state of the art on inherited epidermolysis bullosa, with a special focus on the associated clinical and genetic aspects, presenting data from the most recent reclassification consensus, published in 2020.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Tosetto Santin
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Dermatology Service, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Ana Elisa Kiszewski
- Dermatology Service, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Pediatric Dermatology Unit, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Mariath LM, Santin JT, Frantz JA, Doriqui MJR, Schuler-Faccini L, Kiszewski AE. Genotype-phenotype correlations on epidermolysis bullosa with congenital absence of skin: A comprehensive review. Clin Genet 2020; 99:29-41. [PMID: 32506467 DOI: 10.1111/cge.13792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Congenital absence of skin (CAS) is a clinical sign associated with the main types of epidermolysis bullosa (EB). Very few studies have investigated the genetic background that may influence the occurrence of this condition. Our objective was to investigate genotype-phenotype correlations on EB with CAS through a literature revision on the pathogenic variants previously reported. A total of 171 cases (49 EB simplex, EBS; 23 junctional EB, JEB; and 99 dystrophic EB, DEB), associated with 132 pathogenic variants in eight genes, were included in the genotype-phenotype analysis. In EBS, CAS showed to be a recurrent clinical sign in EBS with pyloric atresia (PA) and EBS associated with kelch-like protein 24; CAS was also described in patients with keratins 5/14 alterations, particularly involving severe phenotypes. In JEB, this is a common clinical sign in JEB with PA associated with premature termination codon variants and/or amino acid substitutions located in the extracellular domain of integrin α6β4 genes. In DEB with CAS, missense variants occurring close to non-collagenous interruptions of the triple-helix domain of collagen VII appear to influence this condition. This study is the largest review of patients with EB and CAS and expands the spectrum of known variants on this phenomenon.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Tosetto Santin
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeanine Aparecida Frantz
- Faculty of Medicine, Universidade Regional de Blumenau, Blumenau, Brazil.,Board of Directors, Debra-Brasil, Blumenau, Brazil
| | | | - Lavínia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul and Instituto Nacional de Ciência e Tecnologia de Genética Médica Populacional (INaGeMP), Porto Alegre, Brazil
| | - Ana Elisa Kiszewski
- Section of Dermatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Section of Pediatric Dermatology, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
18
|
Hedberg-Oldfors C, Abramsson A, Osborn DPS, Danielsson O, Fazlinezhad A, Nilipour Y, Hübbert L, Nennesmo I, Visuttijai K, Bharj J, Petropoulou E, Shoreim A, Vona B, Ahangari N, López MD, Doosti M, Banote RK, Maroofian R, Edling M, Taherpour M, Zetterberg H, Karimiani EG, Oldfors A, Jamshidi Y. Cardiomyopathy with lethal arrhythmias associated with inactivation of KLHL24. Hum Mol Genet 2020; 28:1919-1929. [PMID: 30715372 PMCID: PMC6812045 DOI: 10.1093/hmg/ddz032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel P S Osborn
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Olof Danielsson
- Department of Neurology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Afsoon Fazlinezhad
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laila Hübbert
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Kittichate Visuttijai
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jaipreet Bharj
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Evmorfia Petropoulou
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Azza Shoreim
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Najmeh Ahangari
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcela Dávila López
- Bioinformatics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Malin Edling
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mehdi Taherpour
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 1PJ, UK
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran.,Innovative Medical Research Center, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| |
Collapse
|
19
|
Bolling MC, Jonkman MF. KLHL24: Beyond Skin Fragility. J Invest Dermatol 2019; 139:22-24. [PMID: 30579426 DOI: 10.1016/j.jid.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 02/05/2023]
Abstract
KLHL24 mutations have recently been associated with epidermolysis bullosa simplex. Initial studies focused on skin fragility. However, the picture of KLHL24 mutations causing extracutaneous human disease is emerging, with dilated cardiomyopathy as a strong association. In addition, neurological disease is suspected as well. Careful clinical follow-up and functional studies of (mutated) KLHL24 in these tissues are needed.
Collapse
Affiliation(s)
- Maria C Bolling
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | - Marcel F Jonkman
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands.
| |
Collapse
|
20
|
Grilletta EA. Cardiac transplant for epidermolysis bullosa simplex with KLHL24 mutation-associated cardiomyopathy. JAAD Case Rep 2019; 5:912-914. [PMID: 31649980 PMCID: PMC6804561 DOI: 10.1016/j.jdcr.2019.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Erica Ann Grilletta
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
|
22
|
Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J. Phenotypic Spectrum of Epidermolysis Bullosa: The Paradigm of Syndromic versus Non-Syndromic Skin Fragility Disorders. J Invest Dermatol 2018; 139:522-527. [PMID: 30393082 DOI: 10.1016/j.jid.2018.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
Abstract
The heritable forms of epidermolysis bullosa (EB), a phenotypically heterogeneous group of skin fragility disorders, is currently associated with mutations in as many as 21 distinct genes. EB is primarily a disorder affecting the epithelial layers of skin and mucous membranes, without extracutaneous manifestations, and thus is nonsyndromic. However, recent demonstrations of skin blistering in multisystem disorders with single gene defects highlight the concept of syndromic EB. Here, we review the phenotypic and genotypic features of syndromic forms of EB to delineate the concept of syndromic versus nonsyndromic skin fragility disorders.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Pennsylvania, USA
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Schwieger-Briel A, Fuentes I, Castiglia D, Barbato A, Greutmann M, Leppert J, Duchatelet S, Hovnanian A, Burattini S, Yubero MJ, Ibañez-Arenas R, Rebolledo-Jaramillo B, Gräni C, Ott H, Theiler M, Weibel L, Paller AS, Zambruno G, Fischer J, Palisson F, Has C. Epidermolysis Bullosa Simplex with KLHL24 Mutations Is Associated with Dilated Cardiomyopathy. J Invest Dermatol 2018; 139:244-249. [PMID: 30120936 DOI: 10.1016/j.jid.2018.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Agnes Schwieger-Briel
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Epidermolysis bullosa Centre, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Ignacia Fuentes
- Fundación DEBRA Chile, Santiago, Chile; Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Antonio Barbato
- Emergency Medicine and Hypertension Unit, Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Matthias Greutmann
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Juna Leppert
- Epidermolysis bullosa Centre, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sabine Duchatelet
- INSERM, Laboratory of Genetic Skin Diseases, Imagine Institute and Paris Descartes University, Paris, France
| | - Alain Hovnanian
- INSERM, Laboratory of Genetic Skin Diseases, Imagine Institute and Paris Descartes University, Paris, France
| | | | - M Joao Yubero
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Ibañez-Arenas
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Department of Cardiology, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Christoph Gräni
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Hagen Ott
- Division of Pediatric Dermatology and Allergology, Children's Hospital Auf der Bult, Hanover, Germany
| | - Martin Theiler
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Lisa Weibel
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Judith Fischer
- Department of Human Genetics, Medical Center-University of Freiburg, Germany
| | - Francis Palisson
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Dermatology Department, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cristina Has
- Epidermolysis bullosa Centre, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|