1
|
Salo M, Kimpimäki T, Huhtala H, Saarela T. Genetic testing and new variants in diagnosis of congenital ichthyoses. Mol Genet Genomic Med 2024; 12:e70000. [PMID: 39189679 PMCID: PMC11348405 DOI: 10.1002/mgg3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate how diagnostic practice in congenital ichthyoses has evolved during the years 2000-2020 and what kind of gene variants of congenital ichthyosis have been found. METHODS The study cohort of this register-based research consisted of a total of 88 patients, whose diagnostic testing was conducted, and ichthyosis diagnoses set at the Department of Dermatology and the Department of Clinical Genetics at Tampere University Hospital during the years 2000-2020. RESULTS Diagnosis of ichthyosis was confirmed with genetic testing in 33 cases, and with conventional diagnostic methods, such as clinical findings, skin biopsy and family history of ichthyoses, in 55 cases. We observed four novel variants in patients with the clinical diagnoses of congenital ichthyoses. CONCLUSION When genetic testing became available, it was offered primarily to patients with severe forms of ichthyosis. During the study period next-generation sequencing became the genetic testing method of choice providing new opportunities in diagnostics.
Collapse
Affiliation(s)
- Milja Salo
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Teija Kimpimäki
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Department of DermatologyTampere University HospitalTampereFinland
| | - Heini Huhtala
- Faculty of Social SciencesTampere UniversityTampereFinland
| | - Tanja Saarela
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Department of Clinical GeneticsKuopio University HospitalKuopioFinland
| |
Collapse
|
2
|
Gong Z, Yang S, Ling S, Wang H, Xu X, Lin Z. Dermatopathological features and successful treatment with topical antioxidant for ichthyosiform lesions in Mitchell syndrome caused by an ACOX1 variant. J Dermatol 2024. [PMID: 38923010 DOI: 10.1111/1346-8138.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Peroxisomal acyl-CoA oxidase 1 (ACOX1), is a peroxisomal enzyme that catalyzes β-oxidation of very-long-chain fatty acids (VLCFA). The gain-of-function variant p.Asn237Ser in ACOX1 has been shown to cause Mitchell syndrome (MITCH), a neurodegenerative disorder characterized by episodic demyelination, hearing loss, and polyneuropathy, through the overproduction of hydrogen peroxide. Only eight cases of MITCH have been reported. While all these patients experienced cutaneous abnormalities, detailed skin features and potential treatment have not been documented. Herein, we report two MITCH patients who harbored a de novo heterozygous variant p.Asn237Ser in ACOX1 and experienced progressive ichthyosiform erythroderma. Skin histopathology revealed hyperkeratosis and parakeratosis with focal hypogranulosis as well as dyskeratotic keratinocytes. Lipid accumulation in the epidermis was observed using Oil Red O staining. Both patients exhibited a remarkable response to treatment with the topical antioxidant N-acetylcysteine (NAC), with Patient 1 achieving complete recovery after 3 months of consistent treatment. This study provides the first comprehensive description of the clinicopathological characteristics and effective treatment of skin lesions in MITCH patients. The successful treatment with topical NAC suggests excessive reactive oxygen species might play a significant role in the pathogenesis of skin lesions in MITCH.
Collapse
Affiliation(s)
- Zhuoqing Gong
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Sai Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shiqi Ling
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiukuan Xu
- Department of Dermatology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wu Y, Wu D, Lan Y, Lan S, Li D, Zheng Z, Wang H, Ma L. Case report: Sex-specific characteristics of epilepsy phenotypes associated with Xp22.31 deletion: a case report and review. Front Genet 2023; 14:1025390. [PMID: 37347056 PMCID: PMC10280017 DOI: 10.3389/fgene.2023.1025390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Deletion in the Xp22.31 region is increasingly suggested to be involved in the etiology of epilepsy. Little is known regarding the genomic and clinical delineations of X-linked epilepsy in the Chinese population or the sex-stratified difference in epilepsy characteristics associated with deletions in the Xp22.31 region. In this study, we reported two siblings with a 1.69 Mb maternally inherited microdeletion at Xp22.31 involving the genes VCX3A, HDHD1, STS, VCX, VCX2, and PNPLA4 presenting with easily controlled focal epilepsy and language delay with mild ichthyosis in a Chinese family with a traceable 4-generation history of skin ichthyosis. Both brain magnetic resonance imaging results were normal, while EEG revealed epileptic abnormalities. We further performed an exhaustive literature search, documenting 25 patients with epilepsy with gene defects in Xp22.31, and summarized the epilepsy heterogeneities between sexes. Males harboring the Xp22.31 deletion mainly manifested with child-onset, easily controlled focal epilepsy accompanied by X-linked ichthyosis; the deletions were mostly X-linked recessive, with copy number variants (CNVs) in the classic region of deletion (863.38 kb-2 Mb). In contrast, epilepsy in females tended to be earlier-onset, and relatively refractory, with pathogenic CNV sizes varying over a larger range (859 kb-56.36 Mb); the alterations were infrequently inherited and almost combined with additional CNVs. A candidate region encompassing STS, HDHD1, and MIR4767 was the likely pathogenic epilepsy-associated region. This study filled in the knowledge gap regarding the genomic and clinical delineations of X-linked recessive epilepsy in the Chinese population and extends the understanding of the sex-specific characteristics of Xp22.31 deletion in regard to epilepsy.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shaocong Lan
- Department of clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Hospital of Guangzhou Medical University), Guangzhou, China
| |
Collapse
|
4
|
Harnett C, Al-Jubouri M, Meah N. Delayed diagnosis of a scaling genodermatosis. BMJ Case Rep 2023; 16:e253838. [PMID: 37197832 PMCID: PMC10193083 DOI: 10.1136/bcr-2022-253838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Affiliation(s)
- Clare Harnett
- Dermatology, St Helens and Knowsley Teaching Hospitals NHS Trust, St Helens, UK
| | - Mohammad Al-Jubouri
- Chemical Pathology, St Helens and Knowsley Teaching Hospitals NHS Trust, St Helens, UK
| | - Nekma Meah
- Dermatology, St Helens and Knowsley Teaching Hospitals NHS Trust, St Helens, UK
| |
Collapse
|
5
|
Wren GH, Davies W. X-linked ichthyosis: New insights into a multi-system disorder. SKIN HEALTH AND DISEASE 2022; 2:e179. [PMID: 36479267 PMCID: PMC9720199 DOI: 10.1002/ski2.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Background X-linked ichthyosis (XLI) is a rare genetic condition almostexclusively affecting males; it is characterised by abnormal desquamation and retentionhyperkeratosis, and presents with polygonal brown scales. Most cases resultfrom genetic deletions within Xp22.31 spanning the STS (steroid sulfatase)gene, with the remaining cases resulting from STS-specific mutations. For manyyears it has been recognised that individuals with XLI are at increased risk ofcryptorchidism and corneal opacities. Methods We discuss emerging evidence that such individuals are alsomore likely to be affected by a range of neurodevelopmental and psychiatrictraits, by cardiac arrhythmias, and by rare fibrotic and bleeding-relatedconditions. We consider candidate mechanisms that may confer elevatedlikelihood of these individual conditions, and propose a novel commonbiological risk pathway. Results Understanding the prevalence, nature and co-occurrence ofcomorbidities associated with XLI is critical for ensuring early identificationof symptoms and for providing the most effective genetic counselling andmultidisciplinary care for affected individuals. Conclusion Future work in males with XLI, and in new preclinical andcellular model systems, should further clarify underlying pathophysiologicalmechanisms amenable to therapeutic intervention.
Collapse
Affiliation(s)
| | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- School of MedicineCardiff UniversityCardiffUK
- Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
6
|
Brcic L, Wren GH, Underwood JFG, Kirov G, Davies W. Comorbid Medical Issues in X-Linked Ichthyosis. JID INNOVATIONS 2022; 2:100109. [PMID: 35330591 PMCID: PMC8938907 DOI: 10.1016/j.xjidi.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lucija Brcic
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Georgina H Wren
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jack F G Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Wren GH, Humby T, Thompson AR, Davies W. Mood symptoms, neurodevelopmental traits, and their contributory factors in X-linked ichthyosis, ichthyosis vulgaris and psoriasis. Clin Exp Dermatol 2022; 47:1097-1108. [PMID: 35104372 PMCID: PMC9314151 DOI: 10.1111/ced.15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
Background High rates of adverse mood/neurodevelopmental traits are seen in multiple dermatological conditions, and can significantly affect patient quality of life. Understanding the sex‐specific nature, magnitude, impact and basis of such traits in lesser‐studied conditions like ichthyosis, is important for developing effective interventions. Aim To quantify and compare relevant psychological traits in men with X‐linked ichthyosis (XLI, n = 54) or in XLI carrier women (n = 83) and in patients with ichthyosis vulgaris (IV, men n = 23, women n = 59) or psoriasis (men n = 30, women n = 122), and to identify factors self‐reported to contribute most towards depressive, anxious and irritable phenotypes. Methods Participants recruited via relevant charities or social media completed an online survey of established questionnaires. Data were analysed by sex and skin condition, and compared with general population data. Results Compared with the general population, there was a higher rate of lifetime prevalence of mood disorder diagnoses across all groups and of neurodevelopmental disorder diagnoses in the XLI groups. The groups exhibited similarly significant elevations in recent mood symptoms (Cohen d statistic 0.95–1.28, P < 0.001) and neurodevelopmental traits (d = 0.31–0.91, P < 0.05) compared with general population controls, and self‐reported moderate effects on quality of life and stigmatization. There were strong positive associations between neurodevelopmental traits and recent mood symptoms (r > 0.47, P < 0.01), and between feelings of stigmatization and quality of life, particularly in men. Numerous factors were identified as contributing significantly to mood symptoms in a condition or sex‐specific, or condition or sex‐independent, manner. Conclusion We found that individuals with XLI, IV or psoriasis show higher levels of mood disorder diagnoses and symptoms than matched general population controls, and that the prevalence and severity of these is similar across conditions. We also identified a number of factors potentially conferring either general or condition‐specific risk of adverse mood symptoms in the three skin conditions, which could be targeted clinically and/or through education programmes. In clinical practice, recognizing mood/neurodevelopmental problems in ichthyosis and psoriasis, and addressing the predisposing factors identified by this study should benefit the mental health of affected individuals.
Collapse
Affiliation(s)
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Andrew R Thompson
- School of Psychology, Cardiff University, Cardiff, UK.,South Wales Clinical Psychology Doctoral Programme, Cardiff, Vale University Health Board, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Cannon Homaei S, Barone H, Kleppe R, Betari N, Reif A, Haavik J. ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications. Neurosci Biobehav Rev 2021; 132:838-856. [PMID: 34774900 DOI: 10.1016/j.neubiorev.2021.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
Neurometabolic diseases (NMDs) are typically caused by genetic abnormalities affecting enzyme functions, which in turn interfere with normal development and activity of the nervous system. Although the individual disorders are rare, NMDs are collectively relatively common and often lead to lifelong difficulties and high societal costs. Neuropsychiatric manifestations, including ADHD symptoms, are prominent in many NMDs, also when the primary biochemical defect originates in cells and tissues outside the nervous system. ADHD symptoms have been described in phenylketonuria, tyrosinemias, alkaptonuria, succinic semialdehyde dehydrogenase deficiency, X-linked ichthyosis, maple syrup urine disease, and several mitochondrial disorders, but are probably present in many other NMDs and may pose diagnostic and therapeutic challenges. Here we review current literature linking NMDs with ADHD symptoms. We cite emerging evidence that many NMDs converge on common neurochemical mechanisms that interfere with monoamine neurotransmitter synthesis, transport, metabolism, or receptor functions, mechanisms that are also considered central in ADHD pathophysiology and treatment. Finally, we discuss the therapeutic implications of these findings and propose a path forward to increase our understanding of these relationships.
Collapse
Affiliation(s)
- Selina Cannon Homaei
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| | - Helene Barone
- Regional Resource Center for Autism, ADHD, Tourette Syndrome and Narcolepsy, Western Norway, Division of Psychiatry, Haukeland University Hospital, Norway.
| | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Norway; Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, Norway.
| | - Nibal Betari
- Department of Biomedicine, University of Bergen, Norway.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| |
Collapse
|
9
|
Brault J, Walsh L, Vance GH, Weaver DD. Klinefelter's Syndrome with Maternal Uniparental Disomy X, Interstitial Xp22.31 Deletion, X-linked Ichthyosis, and Severe Central Nervous System Regression. J Pediatr Genet 2021; 10:222-229. [PMID: 34504726 DOI: 10.1055/s-0040-1715573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
We presented in this article a patient with Klinefelter syndrome (KS) (47,XXY) who had maternal nondisjunction and uniparental disomy of the X chromosome with regions of heterodisomy and isodisomy, an interstitial Xp22.31 deletion of both X chromosomes, and other problems. His mother also possesses the same Xp22.31 deletion. The patient presented with status epilepticus and stroke, followed by severe brain atrophy and developmental regression. His unusual clinical and cytogenetic findings apparently have not been reported with either KS or Xp22.31 deletions. Based on the patient's available genetic and biochemical information, we cannot satisfactorily explain his seizures, strokes, or catastrophic brain regression.
Collapse
Affiliation(s)
- Jennifer Brault
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States.,Department of Pediatrics, Division of Medical Genetic and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Laurence Walsh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Neurology, Section of Child Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Gail H Vance
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
10
|
Gubb SJA, Brcic L, Underwood JFG, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in male and female carriers of Xp22.31 duplications in the UK Biobank. Hum Mol Genet 2021; 29:2872-2881. [PMID: 32766777 PMCID: PMC7566349 DOI: 10.1093/hmg/ddaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deletions spanning the STS (steroid sulfatase) gene at Xp22.31 are associated with X-linked ichthyosis, corneal opacities, testicular maldescent, cardiac arrhythmia, and higher rates of developmental and mood disorders/traits, possibly related to the smaller volume of some basal ganglia structures. The consequences of duplication of the same genomic region have not been systematically assessed in large or adult samples, although evidence from case reports/series has indicated high rates of developmental phenotypes. We compared multiple measures of physical and mental health, cognition and neuroanatomy in male (n = 414) and female (n = 938) carriers of 0.8–2.5 Mb duplications spanning STS, and non-carrier male (n = 192, 826) and female (n = 227, 235) controls from the UK Biobank (recruited aged 40–69 from the UK general population). Clinical and self-reported diagnoses indicated a higher prevalence of inguinal hernia and mania/bipolar disorder respectively in male duplication carriers, and a higher prevalence of gastro-oesophageal reflux disease and blistering/desquamating skin disorder respectively in female duplication carriers; duplication carriers also exhibited reductions in several depression-related measures, and greater happiness. Cognitive function and academic achievement did not differ between comparison groups. Neuroanatomical analysis suggested greater lateral ventricle and putamen volume in duplication carriers. In conclusion, Xp22.31 duplications appear largely benign, but could slightly increase the likelihood of specific phenotypes (although results were only nominally-significant). In contrast to deletions, duplications might protect against depressive symptoms, possibly via higher STS expression/activity (resulting in elevated endogenous free steroid levels), and through contributing towards an enlarged putamen volume. These results should enable better genetic counselling of individuals with Xp22.31 microduplications.
Collapse
Affiliation(s)
- Samuel J A Gubb
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Lucija Brcic
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jack F G Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Kimberley M Kendall
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Xavier Caseras
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - George Kirov
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - William Davies
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.,School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
11
|
Xie W, Zhou H, Zhou L, Gong Y, Lin J, Chen Y. Clinical features and genetic analysis of two Chinese families with X-linked ichthyosis. J Int Med Res 2021; 48:300060520962292. [PMID: 33026262 PMCID: PMC7545777 DOI: 10.1177/0300060520962292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective Recessive X-linked ichthyosis (RXLI) caused by deficiency of the steroid sulfatase gene (STS) has a reported prevalence of 1/2000 to 1/6000. The present study aimed to characterize the phenotypes and genotypes of two Chinese families with RXLI. Methods The patients were referred to the Family Planning Research Institute of Hunan Province for genetic counseling. Their skin phenotypes were photographed, and venous blood was drawn and used for chromosomal microarray analysis (CMA). Results The skin phenotype of the proband from the first family was characterized by generalized skin dryness and scaling, with noticeable dark brown, polygonal scales on his trunk and extensor surfaces of his extremities. The proband from the second family had an atypical phenotype showing mild skin dryness over his entire body, slight scaling on his abdomen, and small skin fissures on his arms and legs. No mental disability or developmental anomaly was noted in either proband. CMA revealed that both probands carried a 1.4-Mb deletion on chromosome Xp22.31 involving four Online Mendelian Inheritance in Man-listed genes including STS. Conclusions Our findings add knowledge to the genotype and phenotype spectrum of RXLI, which may be helpful in genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Wanqin Xie
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,Key Laboratory of Genetics and Birth Health, Family Planning Research Institute of Hunan Province, Changsha, Hunan, China
| | - Haiyan Zhou
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,Key Laboratory of Genetics and Birth Health, Family Planning Research Institute of Hunan Province, Changsha, Hunan, China
| | - Lin Zhou
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,Key Laboratory of Genetics and Birth Health, Family Planning Research Institute of Hunan Province, Changsha, Hunan, China
| | - Yun Gong
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,Key Laboratory of Genetics and Birth Health, Family Planning Research Institute of Hunan Province, Changsha, Hunan, China
| | - Jiwu Lin
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,Key Laboratory of Genetics and Birth Health, Family Planning Research Institute of Hunan Province, Changsha, Hunan, China
| | - Yong Chen
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,Key Laboratory of Genetics and Birth Health, Family Planning Research Institute of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
12
|
Davies W. The contribution of Xp22.31 gene dosage to Turner and Klinefelter syndromes and sex-biased phenotypes. Eur J Med Genet 2021; 64:104169. [PMID: 33610733 DOI: 10.1016/j.ejmg.2021.104169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Turner syndrome (TS) is a rare developmental condition in females caused by complete, or partial, loss of the second sex chromosome; it is associated with a number of phenotypes including short stature, ovarian failure and infertility, as well as neurobehavioural and cognitive manifestations. In contrast, Klinefelter syndrome (KS) arises from an excess of X chromosome material in males (typical karyotype is 47,XXY); like TS, KS is associated with infertility and hormonal imbalance, and behavioural/neurocognitive differences from gonadal sex-matched counterparts. Lower dosage of genes that escape X-inactivation may partially explain TS phenotypes, whilst overdosage of these genes may contribute towards KS-related symptoms. Here, I discuss new findings from individuals with deletions or duplications limited to Xp22.31 (a region escaping X-inactivation), and consider the extent to which altered gene dosage within this small interval (and of the steroid sulfatase (STS) gene in particular) may influence the phenotypic profiles of TS and KS. The expression of X-escapees can be higher in female than male tissues; I conclude by considering how lower Xp22.31 gene dosage in males may increase their likelihood of exhibiting particular phenotypes relative to females. Understanding the genetic contribution to specific phenotypes in rare disorders such as TS and KS, and to more common sex-biased phenotypes, will be important for developing more effective, and more personalised, therapeutic approaches.
Collapse
Affiliation(s)
- William Davies
- School of Psychology, Cardiff University, Cardiff, UK; Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
13
|
Saba T. Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features. Microsc Res Tech 2021; 84:1272-1283. [PMID: 33399251 DOI: 10.1002/jemt.23686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Abstract
Skin covers the entire body and is the largest organ. Skin cancer is one of the most dreadful cancers that is primarily triggered by sensitivity to ultraviolet rays from the sun. However, the riskiest is melanoma, although it starts in a few different ways. The patient is extremely unaware of recognizing skin malignant growth at the initial stage. Literature is evident that various handcrafted and automatic deep learning features are employed to diagnose skin cancer using the traditional machine and deep learning techniques. The current research presents a comparison of skin cancer diagnosis techniques using handcrafted and non-handcrafted features. Additionally, clinical features such as Menzies method, seven-point detection, asymmetry, border color and diameter, visual textures (GRC), local binary patterns, Gabor filters, random fields of Markov, fractal dimension, and an oriental histography are also explored in the process of skin cancer detection. Several parameters, such as jacquard index, accuracy, dice efficiency, preciseness, sensitivity, and specificity, are compared on benchmark data sets to assess reported techniques. Finally, publicly available skin cancer data sets are described and the remaining issues are highlighted.
Collapse
Affiliation(s)
- Tanzila Saba
- Artificial Intelligence & Data Analytics Lab, CCIS Prince Sultan University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Hinokuma N, Nakashima M, Asai H, Nakamura K, Akaboshi S, Fukuoka M, Togawa M, Oana S, Ohno K, Kasai M, Ogawa C, Yamamoto K, Okumiya K, Chong PF, Kira R, Uchino S, Fukuyama T, Shinagawa T, Miyata Y, Abe Y, Hojo A, Kobayashi K, Maegaki Y, Ishikawa N, Ikeda H, Amamoto M, Mizuguchi T, Iwama K, Itai T, Miyatake S, Saitsu H, Matsumoto N, Kato M. Clinical and genetic characteristics of patients with Doose syndrome. Epilepsia Open 2020; 5:442-450. [PMID: 32913952 PMCID: PMC7469791 DOI: 10.1002/epi4.12417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To elucidate the genetic background and genotype-phenotype correlations for epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy (MAE) or Doose syndrome. METHODS We collected clinical information and blood samples from 29 patients with MAE. We performed whole-exome sequencing for all except one MAE case in whom custom capture sequencing identified a variant. RESULTS We newly identified four variants: SLC6A1 and HNRNPU missense variants and microdeletions at 2q24.2 involving SCN1A and Xp22.31 involving STS. Febrile seizures preceded epileptic or afebrile seizures in four patients, of which two patients had gene variants. Myoclonic-atonic seizures occurred at onset in four patients, of which two had variants, and during the course of disease in three patients. Variants were more commonly identified in patients with a developmental delay or intellectual disability (DD/ID), but genetic status was not associated with the severity of DD/ID. Attention-deficit/hyperactivity disorder and autistic spectrum disorder were less frequently observed in patients with variants than in those with unknown etiology. SIGNIFICANCE MAE patients had genetic heterogeneity, and HNRNPU and STS emerged as possible candidate causative genes. Febrile seizures prior to epileptic seizures and myoclonic-atonic seizure at onset indicate a genetic predisposition to MAE. Comorbid conditions were not related to genetic predisposition to MAE.
Collapse
Affiliation(s)
- Nodoka Hinokuma
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Mitsuko Nakashima
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hideyuki Asai
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | | | - Masataka Fukuoka
- Shizuoka Institute of Epilepsy and Neurological DisordersShizuokaJapan
| | - Masami Togawa
- Department of PediatricsTottori Prefectural Central HospitalTottoriJapan
| | - Shingo Oana
- Department of PediatricsTokyo Medical UniversityTokyoJapan
| | - Koyo Ohno
- Division of Child NeurologyInstitute of Neurological SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | - Mariko Kasai
- Department of Developmental Medical Sciences Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Chikako Ogawa
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Kazuna Yamamoto
- Department of PediatricsTeikyo University School of MedicineTokyoJapan
| | - Kiyohito Okumiya
- Department of Pediatrics and Child HealthKurume University School of MedicineFukuokaJapan
| | - Pin Fee Chong
- Department of Pediatric NeurologyFukuoka Children's HospitalFukuokaJapan
| | - Ryutaro Kira
- Department of Pediatric NeurologyFukuoka Children's HospitalFukuokaJapan
| | - Shumpei Uchino
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
- Department of PediatricsThe University of TokyoTokyoJapan
| | - Tetsuhiro Fukuyama
- Department of PediatricsShinshu University School of MedicineMatsumotoJapan
| | | | - Yohane Miyata
- Department of PediatricsKyorin University Faculty of MedicineTokyoJapan
| | - Yuichi Abe
- Department of PediatricsSaitama Medical UniversityMoroyamaJapan
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Akira Hojo
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Kozue Kobayashi
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Yoshihiro Maegaki
- Division of Child NeurologyInstitute of Neurological SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | | | - Hiroko Ikeda
- Shizuoka Institute of Epilepsy and Neurological DisordersShizuokaJapan
| | - Masano Amamoto
- Kitakyushu City Yahata Hospital Pediatric Emergency/Children’s Medical CenterFukuokaJapan
| | - Takeshi Mizuguchi
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuhiro Iwama
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Toshiyuki Itai
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Miyatake
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Mitsuhiro Kato
- Department of PediatricsShowa University School of MedicineTokyoJapan
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| |
Collapse
|
15
|
Myers KA, Simard-Tremblay E, Saint-Martin C. X-Linked Familial Focal Epilepsy Associated With Xp22.31 Deletion. Pediatr Neurol 2020; 108:113-116. [PMID: 32299744 DOI: 10.1016/j.pediatrneurol.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The genetic basis for familial focal epilepsy is poorly understood, with most of the known genetic causes occurring via autosomal dominant inheritance. X-linked familial focal epilepsy has not been previously reported. METHODS We reviewed our research database for cases of X-linked focal epilepsy. RESULTS We identified three boys with X-linked ichthyosis and focal epilepsy, including two maternal cousins. Age of seizure onset ranged from seven to 10 years, and all three patients had seizures that were relatively easily controlled. The epilepsy phenotype in all boys was consistent with self-limited focal epilepsy of childhood, most closely resembling childhood epilepsy with centrotemporal spikes. Brain magnetic resonance imaging was normal in two of the boys, with a third found to have a suspected focal cortical dysplasia. All three boys carried maternally inherited hemizygous Xp22.31 deletions (estimated size 0.9 to 1.66 Mb), affecting four to six genes. Of the affected genes, only STS has clear clinical relevance; deletions, and pathogenic variants in STS cause X-linked ichthyosis, although all patients described had only minor skin findings. CONCLUSIONS The findings in these patients illustrate that X-linked familial focal epilepsy can occur, although it is a rare entity. Although STS pathogenic variants are likely better categorized as an epilepsy risk factor, variants in this gene may partially explain the male predominance observed in specific epilepsy phenotypes, namely childhood epilepsy with centrotemporal spikes.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Pediatrics and Neurology & Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Elisabeth Simard-Tremblay
- Departments of Pediatrics and Neurology & Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Christine Saint-Martin
- Department of Medical Imaging, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Brcic L, Underwood JF, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in carriers of X-linked ichthyosis-associated genetic deletions in the UK Biobank. J Med Genet 2020; 57:692-698. [PMID: 32139392 PMCID: PMC7525778 DOI: 10.1136/jmedgenet-2019-106676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND X-linked ichthyosis (XLI) is an uncommon dermatological condition resulting from a deficiency of the enzyme steroid sulfatase (STS), often caused by X-linked deletions spanning STS. Some medical comorbidities have been identified in XLI cases, but small samples of relatively young patients has limited this. STS is highly expressed in subcortical brain structures, and males with XLI and female deletion carriers appear at increased risk of developmental/mood disorders and associated traits; the neurocognitive basis of these findings has not been examined. METHODS Using the UK Biobank resource, comprising participants aged 40-69 years recruited from the general UK population, we compared multiple medical/neurobehavioural phenotypes in males (n=86) and females (n=312) carrying genetic deletions spanning STS (0.8-2.5 Mb) (cases) to male (n=190 577) and female (n=227 862) non-carrier controls. RESULTS We identified an elevated rate of atrial fibrillation/flutter in male deletion carriers (10.5% vs 2.7% in male controls, Benjamini-Hochberg corrected p=0.009), and increased rates of mental distress (p=0.003), irritability (p<0.001) and depressive-anxiety traits (p<0.05) in male deletion carriers relative to male controls completing the Mental Health Questionnaire. While academic attainment was unaffected, male and female deletion carriers exhibited impaired performance on the Fluid Intelligence Test (Cohen's d≤0.05, corrected p<0.1). Neuroanatomical analysis in female deletion carriers indicated reduced right putamen and left nucleus accumbens volumes (Cohen's d≤0.26, corrected p<0.1). CONCLUSION Adult males with XLI disease-causing deletions are apparently at increased risk of cardiac arrhythmias and self-reported mood problems; altered basal ganglia structure may underlie altered function and XLI-associated psychiatric/behavioural phenotypes. These results provide information for genetic counselling of deletion-carrying individuals and reinforce the need for multidisciplinary medical care.
Collapse
Affiliation(s)
- Lucija Brcic
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jack Fg Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kimberley M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK .,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, Lenane P, Moloney FJ, Yazdabadi A. Artificial Intelligence in Dermatology-Where We Are and the Way to the Future: A Review. Am J Clin Dermatol 2020; 21:41-47. [PMID: 31278649 DOI: 10.1007/s40257-019-00462-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although artificial intelligence has been available for some time, it has garnered significant interest recently and has been popularized by major companies with its applications in image identification, speech recognition and problem solving. Artificial intelligence is now being increasingly studied for its potential uses in medicine. A sound understanding of the concepts of this emerging field is essential for the dermatologist as dermatology has abundant medical data and images that can be used to train artificial intelligence for patient care. There are already a number of artificial intelligence studies focusing on skin disorders such as skin cancer, psoriasis, atopic dermatitis and onychomycosis. This article aims to present a basic introduction to the concepts of artificial intelligence as well as present an overview of the current research into artificial intelligence in dermatology, examining both its current applications and its future potential.
Collapse
Affiliation(s)
- Daniel T Hogarty
- Monash University, Eastern Health, 5 Arnold Street, Box Hill 3128, Melbourne, VIC, Australia.
| | - John C Su
- Monash University, Eastern Health, 5 Arnold Street, Box Hill 3128, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin Phan
- Department of Dermatology, Liverpool Hospital, Sydney, NSW, Australia
| | - Mohamed Attia
- Institute for Intelligent Systems Research and Innovation, Geelong, Australia
| | - Mohammed Hossny
- Institute for Intelligent Systems Research and Innovation, Geelong, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation, Geelong, Australia
| | - Patricia Lenane
- Mater Misericordiae University Hospital, Dublin, Ireland
- University College Dublin, School of Medicine and Medical Science, Dublin, Ireland
| | - Fergal J Moloney
- Mater Misericordiae University Hospital, Dublin, Ireland
- University College Dublin, School of Medicine and Medical Science, Dublin, Ireland
| | - Anousha Yazdabadi
- Monash University, Eastern Health, 5 Arnold Street, Box Hill 3128, Melbourne, VIC, Australia
- Department of Dermatology, University of Melbourne, Melbourne, VIC, Australia
- Department of Dermatology, Northern Health, Epping, VIC, Australia
- Department of Dermatology, Deakin University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Afzal S, Ramzan K, Ullah S, Wakil SM, Jamal A, Basit S, Waqar AB. A novel nonsense mutation in the STS gene in a Pakistani family with X-linked recessive ichthyosis: including a very rare case of two homozygous female patients. BMC MEDICAL GENETICS 2020; 21:20. [PMID: 32005174 PMCID: PMC6995215 DOI: 10.1186/s12881-020-0964-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/24/2020] [Indexed: 01/29/2023]
Abstract
Background X-linked ichthyosis (XLI; OMIM# 308100) is a recessive keratinization disorder characterized by the presence of dark brown, polygonal, adherent scales on different parts of the body surface. It almost exclusively affects males and the estimated prevalence ranges from 1:2000–6000 in males worldwide. Extracutaneous manifestations are frequent including corneal opacities, cryptorchidism, neuropsychiatric symptoms or others. Up to 90% of XLI cases are caused by recurrent hemizygous microdeletion encompassing entire STS gene on chromosome Xp22.3, while only a minority of patients shows partial deletions or loss of function point mutations in STS. Larger deletions also involving contiguous genes are identified in syndromic patients. Methods Here, we report clinical and genetic findings of a large Pakistani family having 16 affected individuals including 2 females with XLI. Molecular karyotyping and direct DNA sequencing of coding region of the STS gene was performed. Results The clinical manifestations in affected individuals involved generalized dryness and scaling of the skin with polygonal, dark scales of the skin on scalp, trunk, limbs, and neck while sparing face, palms and soles. There were no associated extra-cutaneous features such as short stature, cryptorchidism, photophobia, corneal opacities, male baldness, and behavioral, cognitive, or neurological phenotypes including intellectual disability, autism or attention deficit hyperactivity disorder. Molecular karyotyping was normal and no copy number variation was found. Sanger sequencing identified a novel hemizygous nonsense mutation (c.287G > A; p.W96*), in exon 4 of STS gene in all affected male individuals. In addition, two XLI affected females in the family were found to be homozygous for the identified variant. Conclusions This study is useful for understanding the genetic basis of XLI in the patients studied, for extending the known mutational spectrum of STS, diagnosis of female carriers and for further application of mutation screening in the genetic counseling of this family.
Collapse
Affiliation(s)
- Sibtain Afzal
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Sajjad Ullah
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Arshad Jamal
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah Al-Munawarah, Medina, Saudi Arabia
| | - Ahmed Bilal Waqar
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.
| |
Collapse
|
19
|
Zhang M, Huang H, Lin N, He S, An G, Wang Y, Chen M, Chen L, Lin Y, Xu L. X-linked ichthyosis: Molecular findings in four pedigrees with inconspicuous clinical manifestations. J Clin Lab Anal 2020; 34:e23201. [PMID: 31944387 PMCID: PMC7246362 DOI: 10.1002/jcla.23201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Background X‐linked ichthyosis (XLI) is the second most common type of ichthyosis, which is characterized by wide and symmetric distribution of adherent, dry, and polygonal scales on the skin. Steroid sulfatase (STS) gene, which is located at chromosome Xp22.31, has been identified as the pathogenic gene of XLI. Methods In this study, chromosome karyotype analysis, bacterial artificial chromosomes‐on‐Beads™ (BoBs) assay, fluorescence in situ hybridization (FISH), and single nucleotide polymorphism array (SNP‐array) were employed for the prenatal diagnoses in three pregnant women with high‐risk serological screening results and a pregnant woman with mental retardation. Results STS deletion was identified at chromosome Xp22.31 in all four fetuses. Postnatal follow‐up confirmed the diagnosis of ichthyosis in two male fetuses and revealed normal dermatological manifestations in other two female fetuses carrying ichthyosis. Conclusion The results of the present study demonstrate that a combination of karyotypying, prenatal BoBs, FISH, and SNP‐array may avoid the missed detection of common microdeletions and ensure the accuracy of the detection results, which provides a feasible tool for the reliable etiological diagnosis and better genetic counseling of XLI.
Collapse
Affiliation(s)
- Min Zhang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuqiong He
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingji Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuan Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Tran VT, Riveros C, Ravaud P. Patients' views of wearable devices and AI in healthcare: findings from the ComPaRe e-cohort. NPJ Digit Med 2019; 2:53. [PMID: 31304399 PMCID: PMC6572821 DOI: 10.1038/s41746-019-0132-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/12/2023] Open
Abstract
Wearable biometric monitoring devices (BMDs) and artificial intelligence (AI) enable the remote measurement and analysis of patient data in real time. These technologies have generated a lot of "hype," but their real-world effectiveness will depend on patients' uptake. Our objective was to describe patients' perceptions of the use of BMDs and AI in healthcare. We recruited adult patients with chronic conditions in France from the "Community of Patients for Research" (ComPaRe). Participants (1) answered quantitative and open-ended questions about the potential benefits and dangers of using of these new technologies and (2) participated in a case-vignette experiment to assess their readiness for using BMDs and AI in healthcare. Vignettes covered the use of AI to screen for skin cancer, remote monitoring of chronic conditions to predict exacerbations, smart clothes to guide physical therapy, and AI chatbots to answer emergency calls. A total of 1183 patients (51% response rate) were enrolled between May and June 2018. Overall, 20% considered that the benefits of technology (e.g., improving the reactivity in care and reducing the burden of treatment) greatly outweighed the dangers. Only 3% of participants felt that negative aspects (inadequate replacement of human intelligence, risks of hacking and misuse of private patient data) greatly outweighed potential benefits. We found that 35% of patients would refuse to integrate at least one existing or soon-to-be available intervention using BMDs and AI-based tools in their care. Accounting for patients' perspectives will help make the most of technology without impairing the human aspects of care, generating a burden or intruding on patients' lives.
Collapse
Affiliation(s)
- Viet-Thi Tran
- METHODS Team, Center for Research in Epidemiology and StatisticS (CRESS) – Université Paris Descartes INSERM (UMR 1153), 1 Place du Parvis Notre Dame, 75004 Paris, France
- Paris Descartes University, 12 Rue de l’École de Médecine, 75006 Paris, France
- Center for Clinical Epidemiology, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Place du Parvis Notre Dame, 75004 Paris, France
| | - Carolina Riveros
- Center for Clinical Epidemiology, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Place du Parvis Notre Dame, 75004 Paris, France
| | - Philippe Ravaud
- METHODS Team, Center for Research in Epidemiology and StatisticS (CRESS) – Université Paris Descartes INSERM (UMR 1153), 1 Place du Parvis Notre Dame, 75004 Paris, France
- Paris Descartes University, 12 Rue de l’École de Médecine, 75006 Paris, France
- Center for Clinical Epidemiology, Hôtel-Dieu Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 1 Place du Parvis Notre Dame, 75004 Paris, France
- Department of Epidemiology, Columbia University Mailman School of Public Health, 22W 168th St, New York, NY USA
| |
Collapse
|
21
|
Cavenagh A, Chatterjee S, Davies W. Behavioural and psychiatric phenotypes in female carriers of genetic mutations associated with X-linked ichthyosis. PLoS One 2019; 14:e0212330. [PMID: 30768640 PMCID: PMC6377116 DOI: 10.1371/journal.pone.0212330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
X-linked ichthyosis (XLI) is a rare X-linked dermatological condition arising from deficiency for the enzyme steroid sulfatase (STS). STS is normally expressed in the brain, and males with XLI exhibit personality differences from males in the general population, and are at increased risk of developmental and mood disorders. As the STS gene escapes X-inactivation, female carriers of XLI-associated genetic mutations have reduced STS expression/activity relative to non-carrier females, and could manifest similar behavioural phenotypes to males with XLI. Additionally, as STS activity normally increases in female tissues towards late pregnancy and into the puerperium, carrier females could theoretically present with increased rates of postpartum psychopathology. Using a worldwide online survey comprising custom-designed demographic questionnaires and multiple validated psychological questionnaires, we collected detailed self-reported information on non-postpartum and postpartum behaviour in confirmed adult (>16yrs) female carriers of genetic mutations associated with XLI (n = 94) for statistical comparison to demographically-matched previously-published normative data from female controls (seven independent studies, 98≤n≤2562), adult males with XLI (n = 58), and to newly-obtained online survey data from a general population sample of mothers from the United Kingdom and United States of America (n = 263). The pattern of results in carrier females relative to controls was remarkably similar to that previously observed in males with XLI, with evidence for increased rates of developmental and mood disorders, and elevated levels of inattention, impulsivity, autism-related traits and general psychological distress. Carrier females exhibited a significantly elevated rate of postpartum mental health conditions (notably mild depression) relative to controls which could not be accounted for by social factors. Our data confirm the psychological profile associated with XLI-associated mutations, and suggest that female carriers may be at increased risk of psychopathology, including in the postpartum period. These findings are relevant to families affected by XLI, to clinicians involved in the care of these families, and to genetic counsellors.
Collapse
Affiliation(s)
- Alice Cavenagh
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sohini Chatterjee
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Traupe H. Revealing the mysteries of X-linked recessive ichthyosis. Br J Dermatol 2018; 179:821-822. [DOI: 10.1111/bjd.16821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H. Traupe
- Department of Dermatology; University Hospital of Münster; Münster Germany
| |
Collapse
|