1
|
Bencomo T, Lee CS. Gene expression landscape of cutaneous squamous cell carcinoma progression. Br J Dermatol 2024; 191:760-774. [PMID: 38867481 DOI: 10.1093/bjd/ljae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Cutaneous squamous cell carcinomas (cSCCs) are the second most common human cancer and have been characterized by RNA sequencing (RNA-Seq); however, the transferability of findings from individual studies may be limited by small sample sizes and diverse analysis protocols. OBJECTIVES To define the transcriptome landscape at different stages in the progression of normal skin to cSCC via a meta-analysis of publicly available RNA-Seq samples. METHODS Whole-transcriptome data from 73 clinically normal skin samples, 46 actinic keratoses (AK) samples, 16 in situ SCC samples, 13 keratoacanthoma (KA) samples and 147 cSCC samples [including 30 samples from immunocompromised patients and 8 from individuals with recessive dystrophic epidermolysis bullosa (RDEB)] were uniformly processed to harmonize gene expression. Differential expression, fusion detection and cell-type deconvolution analyses were performed. RESULTS Individual RNA-Seq studies of cSCC demonstrated study-specific clustering and varied widely in their differential gene expression detection. Following batch correction, we defined a consensus set of differentially expressed genes (DEGs), including those altered in the preinvasive stages of cSCC development, and used single-cell RNA-Seq data to demonstrate that DEGs are often - but not always - expressed by tumour-specific keratinocytes (TSKs). Analysis of the cellular composition of cSCC, KA and RDEB-cSCC identified an increase in differentiated keratinocytes in KA, while RDEB-cSCC contained the most TSKs. Compared with cSCC arising in immunocompetent individuals, cSCC samples from immunosuppressed patients demonstrated fewer memory B cells and CD8+ T cells. A comprehensive and unbiased search for fusion transcripts in cSCC and intermediate disease stages identified few candidates that recurred in >1% of all specimens, suggesting that most cSCC are not driven by oncogenic gene fusions. Finally, using Genotype-Tissue Expression (GTEx) data, we distilled a novel 300-gene signature of chronic sun exposure that affirms greater cumulative ultraviolet (UV) exposure in later stages of cSCC development. CONCLUSIONS Our results define the gene expression landscape of cSCC progression, characterize cell subpopulation heterogeneity in cSCC subtypes that contribute to their distinct clinical phenotypes, demonstrate that gene fusions are not a common cause of cSCC and identify UV-responsive genes associated with cSCC development.
Collapse
Affiliation(s)
- Tomas Bencomo
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Carolyn S Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
2
|
Wang X, Liu C, Wu H, Gu Y, Zhang L, Xu R, Lin Q. Basement membrane-associated gene expression as a predictor of survival in oral cancer. BMC Cancer 2024; 24:731. [PMID: 38877482 PMCID: PMC11177517 DOI: 10.1186/s12885-024-12485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND This study sought to investigate the prognostic value of basement membrane (BM)-associated gene expressions in oral cancer. METHODS We harvested and integrated data on BM-associated genes (BMGs), the oral cancer transcriptome, and clinical information from public repositories. After identifying differentially expressed BMGs, we used Cox and Lasso regression analyses to create a BMG-based risk score for overall survival at various intervals. We then validated this score using the GSE42743 cohort as a validation set. The prognostic potential of the risk scores and their relations to clinical features were assessed. Further, we conducted functional pathway enrichment, immune cell infiltration, and immune checkpoint analyses to elucidate the immunological implications and therapeutic potential of the BMG-based risk score and constituent genes. To confirm the expression levels of the BMG LAMA3 in clinical samples of oral cancer tissue, we performed quantitative real-time PCR (qRT-PCR) and immunohistochemical staining. RESULTS The BMGs LAMA3, MMP14, and GPC2 demonstrated notable prognostic significance, facilitating the construction of a BMG-based risk score. A higher risk score derived from BMGs correlated with a poorer survival prognosis for oral cancer patients. Moreover, the risk-associated BMGs exhibited a significant relationship with immune function variability (P < 0.05), discrepancies in infiltrating immune cell fractions, and immune checkpoint expressions (P < 0.05). The upregulated expression levels of LAMA3 in oral cancer tissues were substantiated through qRT-PCR and immunohistochemical staining. CONCLUSION The BMG-based risk score emerged as a reliable prognostic tool for oral cancer, meriting further research for validation and potential clinical application.
Collapse
Affiliation(s)
- Xu Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Chaoge Liu
- Department of Oramaxillofacial - Head and Neck Surgery, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - HuiFang Wu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yulu Gu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Le Zhang
- Department of Oral Pathology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Rongqing Xu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qing Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Jacksi M, Schad E, Tantos A. Morphological Changes Induced by TKS4 Deficiency Can Be Reversed by EZH2 Inhibition in Colorectal Carcinoma Cells. Biomolecules 2024; 14:445. [PMID: 38672463 PMCID: PMC11047920 DOI: 10.3390/biom14040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The scaffold protein tyrosine kinase substrate 4 (TKS4) undergoes tyrosine phosphorylation by the epidermal growth factor receptor (EGFR) pathway via Src kinase. The TKS4 deficiency in humans is responsible for the manifestation of a genetic disorder known as Frank-Ter Haar syndrome (FTHS). Based on our earlier investigation, the absence of TKS4 triggers migration, invasion, and epithelial-mesenchymal transition (EMT)-like phenomena while concurrently suppressing cell proliferation in HCT116 colorectal carcinoma cells. This indicates that TKS4 may play a unique role in the progression of cancer. In this study, we demonstrated that the enhancer of zeste homolog 2 (EZH2) and the histone methyltransferase of polycomb repressive complex 2 (PRC2) are involved in the migration, invasion, and EMT-like changes in TKS4-deficient cells (KO). EZH2 is responsible for the maintenance of the trimethylated lysine 27 on histone H3 (H3K27me3). METHODS We performed transcriptome sequencing, chromatin immunoprecipitation, protein and RNA quantitative studies, cell mobility, invasion, and proliferation studies combined with/without the EZH2 activity inhibitor 3-deazanoplanocine (DZNep). RESULTS We detected an elevation of global H3K27me3 levels in the TKS4 KO cells, which could be reduced with treatment with DZNep, an EZH2 inhibitor. Inhibition of EZH2 activity reversed the phenotypic effects of the knockout of TKS4, reducing the migration speed and wound healing capacity of the cells as well as decreasing the invasion capacity, while the decrease in cell proliferation became stronger. In addition, inhibition of EZH2 activity also reversed most epithelial and mesenchymal markers. We investigated the wider impact of TKS4 deletion on the gene expression profile of colorectal cancer cells using transcriptome sequencing of wild-type and TKS4 knockout cells, particularly before and after treatment with DZNep. Additionally, we observed changes in the expression of several protein-coding genes and long non-coding RNAs that showed a recovery in expression levels following EZH2 inhibition. CONCLUSIONS Our results indicate that the removal of TKS4 causes a notable disruption in the gene expression pattern, leading to the disruption of several signal transduction pathways. Inhibiting the activity of EZH2 can restore most of these transcriptomics and phenotypic effects in colorectal carcinoma cells.
Collapse
Affiliation(s)
- Mevan Jacksi
- HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (M.J.); (E.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
- Department of Biology, College of Science, University of Zakho, Duhok 42002, Iraq
| | - Eva Schad
- HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (M.J.); (E.S.)
| | - Agnes Tantos
- HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (M.J.); (E.S.)
| |
Collapse
|
4
|
Islam K, Balasubramanian B, Venkatraman S, Thummarati P, Tunganuntarat J, Phueakphud N, Kanjanasirirat P, Khumpanied T, Kongpracha P, Kittirat Y, Tohtong R, Janvilisri T, Wongtrakoongate P, Borwornpinyo S, Namwat N, Suthiphongchai T. Upregulated LAMA3 modulates proliferation, adhesion, migration and epithelial‑to‑mesenchymal transition of cholangiocarcinoma cells. Sci Rep 2023; 13:22598. [PMID: 38114514 PMCID: PMC10730521 DOI: 10.1038/s41598-023-48798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
A poor outcome for cholangiocarcinoma (CCA) patients is still a clinical challenge. CCA is typically recognized by the desmoplastic nature, which accounts for its malignancy. Among various extracellular matrix proteins, laminin is the most potent inducer for CCA migration. Herein, we accessed the expression profiles of laminin gene family and explored the significance of the key laminin subunit on CCA aggressiveness. Of all 11 laminin genes, LAMA3, LAMA5, LAMB3 and LAMC2 were concordantly upregulated based on the analysis of multiple public transcriptomic datasets and also overexpressed in Thai CCA cell lines and patient tissues in which LAMA3A upregulated in the highest frequency (97%) of the cases. Differential expression genes (DEGs) analysis of low and high laminin signature groups revealed LAMA3 as the sole common DEG in all investigated datasets. Restratifying CCA samples according to LAMA3 expression indicated the association of LAMA3 in the focal adhesion pathway. Silencing LAMA3 revealed that it plays important roles in CCA cell proliferation, adhesion, migration and epithelial-to-mesenchymal transition. Taken together, this research signifies the roles of dysregulated ECM homeostasis in CCA malignancy and highlights, for the first time, the potential usage of LAMA3 as the diagnostic biomarker and the therapeutic target to tackle the CCA stromal.
Collapse
Affiliation(s)
- Kittiya Islam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Brinda Balasubramanian
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simran Venkatraman
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Parichut Thummarati
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Janpen Tunganuntarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pornparn Kongpracha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yingpinyapat Kittirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Sciences, Regional Medical Sciences Center 2, Ministry of Public Health, Phitsanulok, 65000, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | |
Collapse
|
5
|
Cocuz IG, Cocuz ME, Repanovici A, Sabău AH, Niculescu R, Tinca AC, Vunvulea V, Budin CE, Szoke AR, Popelea MC, Moraru R, Cotoi TC, Cotoi OS. Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study. Medicina (B Aires) 2022; 58:medicina58101449. [PMID: 36295609 PMCID: PMC9611311 DOI: 10.3390/medicina58101449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction: Cutaneous squamous cell carcinoma (cSCC) is one of the most frequently occurring types of cancer in humans. Scientometric research is an innovative method for analyzing the research trends in various domains, with great implications in the field of medicine. Materials and Methods: We searched the Web of Science database with the following established query terms: “Squamous cell carcinoma”, “skin”, and “immunohistochemistry”. After applying the inclusion and exclusion criteria, a total of 76 articles were selected. The present study aims to analyze, based on the frequency of use of keywords with scientometric algorithms and map-based distributions, the trends of the research concerning cSCCs in 2017–2022. Results: A graphical representation based on 11 scientometric maps presented the division of the keywords into seven clusters, from which seven categories of research interest were defined. The clusters represent a multidisciplinary approach to the diagnosis and treatment of cSCCs, cancer diagnostics, patient outcomes, histopathological importance, management of cSCCs, role of progression, and adequate treatment of and importance of immunohistochemistry for cSCCs. The distribution of the citations shows the importance of the available research on cSCCs by analyzing the first five most-cited articles included in our study in direct concordance with the seven defined clusters. Conclusion: The scientometric research method reveals the interest of research in the multidisciplinary approach used to obtain the best outcomes for the patient, including a targeted investigation, as well as diagnostic and treatment options. The trends in the research reveal that histopathological diagnostics and immunohistochemistry, combined with molecular techniques, are the most important tools used to establish a personalized diagnosis, thus increasing the quality of life and life expectancy for patients with cSCCs.
Collapse
Affiliation(s)
- Iuliu Gabriel Cocuz
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Maria Elena Cocuz
- Fundamental Prophylactic and Clinical Disciplines Department, Faculty of Medicine, Transilvania University of Brasov, 500003 Brașov, Romania
- Clinical Infectious Diseases Hospital of Brasov, 500174 Brasov, Romania
- Correspondence:
| | - Angela Repanovici
- Faculty of Product Design and Environment, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Adrian-Horațiu Sabău
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Raluca Niculescu
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Andreea-Cătălina Tinca
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Vlad Vunvulea
- Anatomy and Embryology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Corina Eugenia Budin
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Andreea Raluca Szoke
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | | | - Raluca Moraru
- Anatomy and Embryology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
- Department of Plastic Surgery, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Titiana Cornelia Cotoi
- Pharmaceutical Technique Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
- Pharmacy No. 2, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
Orzechowska K, Kopij G, Paukszto L, Dobrzyn K, Kiezun M, Jastrzebski J, Kaminski T, Smolinska N. Chemerin effect on transcriptome of the porcine endometrium during implantation determined by RNA-sequencing†. Biol Reprod 2022; 107:557-573. [PMID: 35349661 DOI: 10.1093/biolre/ioac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
It is well known that the body's metabolism and reproduction are closely related. Chemerin is one of many biologically active proteins secreted by the adipose tissue involved in the regulation of the energy homeostasis of the organism. In the present study, RNA-Sequencing (RNA-Seq) was performed to investigate the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs) and alternatively spliced (AS) transcripts in the cultured in vitro porcine endometrium exposed to chemerin for 24 hours (CHEM; 400 ng/ml) collected during the implantation period (15 to 16 days of gestation). High-throughput sequencing of transcriptomes was performed on the Illumina NovaSeq 6000 platform (Illumina, USA). In the current study, among all 130 DEGs, 58 were up-regulated and were 72 down-regulated in the CHEM-treated group. DEGs were assigned to 73 functional annotations. Twelve identified lncRNAs indicated a difference in the expression profile after CHEM administration. Additionally, we detected 386 differentially AS events encompassed 274 protein-coding genes and 2 lncRNAs. All AS events were divided into 5 alternative splicing types: alternative 3' splice site (A3SS), 5' splice site (A5SS), mutually exclusive exons (MXE), retention intron (RI), and skipping exon (SE). Within all AS events, we identified 42 A3SS, 43 A5SS, 53 MXE, 9 RI, and 239 SE. In summary, CHEM affects the transcriptomic profile of the porcine endometrium, controlling the expression of numerous genes, including those involved in the cell migration and adhesion, angiogenesis, inflammation, and steroidogenesis. It can be assumed that CHEM may be an important factor for a proper course of gestation and embryo development.
Collapse
Affiliation(s)
- Kinga Orzechowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
7
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Amôr NG, Santos PSDS, Campanelli AP. The Tumor Microenvironment in SCC: Mechanisms and Therapeutic Opportunities. Front Cell Dev Biol 2021; 9:636544. [PMID: 33634137 PMCID: PMC7900131 DOI: 10.3389/fcell.2021.636544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
9
|
Leb-Reichl V, Guttmann-Gruber C, Piñon Hofbauer J. Linked in: the extracellular matrix network in tumour dissemination. Br J Dermatol 2020; 184:799. [PMID: 33179769 PMCID: PMC8246853 DOI: 10.1111/bjd.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Linked Article: Caley et al. Br J Dermatol 2021; 184:923–934.
Collapse
Affiliation(s)
- V Leb-Reichl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - C Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - J Piñon Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|