1
|
Müller MC, Cervantes F, Hjorth-Hansen H, Janssen JJWM, Milojkovic D, Rea D, Rosti G. Ponatinib in chronic myeloid leukemia (CML): Consensus on patient treatment and management from a European expert panel. Crit Rev Oncol Hematol 2017; 120:52-59. [PMID: 29198338 DOI: 10.1016/j.critrevonc.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023] Open
Abstract
Five tyrosine kinase inhibitors (TKIs) are currently approved in the European Union for treatment of chronic myeloid leukemia (CML) and all have considerable overlap in their indications. While disease-specific factors such as CML phase, mutational status, and line of treatment are key to TKI selection, other important features must be considered, such as patient-specific comorbidities and TKI safety profiles. Ponatinib, the TKI most recently approved, has demonstrated efficacy in patients with refractory CML, but is associated with an increased risk of arterial hypertension, sometimes severe, and serious arterial occlusive and venous thromboembolic events. A panel of European experts convened to discuss their clinical experience in managing patients with CML. Based on the panel discussions, scenarios in which a CML patient may be an appropriate candidate for ponatinib therapy are described, including presence of the T315I mutation, resistance to other TKIs without the T315I mutation, and intolerance to other TKIs.
Collapse
Affiliation(s)
- Martin C Müller
- Institute for Hematology and Oncology (IHO GmbH), Mannheim, Germany.
| | | | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine (IKM), NTNU, Trondheim, Norway
| | | | | | - Delphine Rea
- Department of Hematology, Hôpital Saint-Louis, Paris, France
| | - Gianantonio Rosti
- Department of Hematology and Oncology "L. and A. Seràgnoli," St Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Liu CN, Mathialagan N, Lappin P, Fortner J, Somps C, Seitis G, Johnson TR, Hu W, Matsumoto D. Crizotinib reduces the rate of dark adaptation in the rat retina independent of ALK inhibition. Toxicol Sci 2014; 143:116-25. [PMID: 25326243 DOI: 10.1093/toxsci/kfu213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crizotinib (Xalkori) is a tyrosine kinase inhibitor of both anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor (c-Met). Though not predicted from standard nonclinical toxicological evaluation, visual disturbance became a frequently observed adverse event in humans. To understand the possible mechanism of this vision effect, an in vivo electroretinogram (ERG) study was conducted to assess retinal functional changes following oral administration of crizotinib. Immunohistochemical (IHC) staining of ALK and c-Met in the neural retinas of human, non-human primate, dog, rat, and mouse was used to aid in the animal model selection. ALK IHC staining was identified predominantly in the ganglion cell and inner nuclear layers of most species evaluated, in the inner plexiform layer in human and rodent, and in the nerve fiber layer in human and rat only. There was no apparent staining of any layer of the neural retina for c-Met in any of the species evaluated. ERG measurements identified a significant reduction in b-wave amplitude during the initial phase of dark adaptation in the crizotinib-treated rats. ERGs were also taken following oral administration of PF-06463922 (an ALK-selective inhibitor), for an understanding of potential kinase involvement. ERG effects were not observed in PF-06463922-treated animals when comparable exposures in the vitreous humor were achieved. Collectively, our results suggest that the ERG b-wave amplitude decreases during dark adaption following crizotinib administration may be related to signaling changes within the retina in rats, likely independent of ALK inhibition.
Collapse
Affiliation(s)
- Chang-Ning Liu
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Nagappan Mathialagan
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Patrick Lappin
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Jay Fortner
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Chris Somps
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Gary Seitis
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Theodore R Johnson
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Wenyue Hu
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| | - Diane Matsumoto
- *Investigative Toxicology, Drug Safety R&D, Pfizer Inc., Groton 06340, Connecticut, Drug Safety R&D, Pfizer Inc., San Diego, CA 92121, Comparative Medicine, Pfizer Inc., Groton 06340, Connecticut and Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc., San Diego, CA 92121
| |
Collapse
|