1
|
Prabhakar N, Chiang H, Munoz Verdugo I, Hakimian A, Bufalino S, Bitran J. T-Cell Lymphoproliferative Disorders Following Allogeneic Bone Marrow Transplant: A Report of Two Cases and a Literature Review. Cureus 2024; 16:e59901. [PMID: 38854253 PMCID: PMC11160960 DOI: 10.7759/cureus.59901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Post-transplantation lymphoproliferative disorders (PTLD) are a commonly occurring condition following solid organ transplantation (SOT) and, rarely, hematopoietic stem cell transplantation (HSCT). As the name suggests, a PTLD is a condition where there is a clonal proliferation of lymphoid cells that occurs as a complication after transplantation. Though the clonal origin cell is primarily associated with the B-cell lineage, there are existing cases in the literature describing PTLD from the T-cell lineage. Large granulocytic leukemia (LGL) is one rare T-cell lineage subtype that typically progresses with a passive clinical course and is discovered with leukocytosis and peripheral blood smears demonstrating large granules in lymphocytes. In this study, we describe two patients initially diagnosed with acute myeloid leukemia (AML) who were both found to have T-cell PTLD after undergoing allogeneic hematopoietic stem cell transplant. One was found with a clonal expansion of T-cells on flow cytometry and the other with LGL on peripheral blood and flow cytometry. This discovery was made at 16 and 20 months after their transplant respectively. Distinguishing factors for these two patients are demonstrated by the derivation of lymphoproliferative disorder from graft vs. host disease (GVHD) or viral etiology, which is significant as both of which have been shown to be associated with PTLD. Epstein-Barr virus (EBV) and cytomegalovirus (CMV) positivity have been shown to be associated with PTLD, and both our patients were EBV-negative but had harbored prior CMV infections. Additionally, they had a benign course with no development of cytopenias or symptoms since the time of diagnosis. These two cases add to the growing literature that is working to better characterize the rare development of LGL and, in general, T-cell PTLD following allogeneic bone marrow transplantation.
Collapse
Affiliation(s)
| | - Harrah Chiang
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | | | - Ari Hakimian
- Hematology and Oncology, Advocate Lutheran General Hospital, Park Ridge, USA
| | - Shams Bufalino
- Hematology and Oncology, Advocate Lutheran General Hospital, Park Ridge, USA
| | - Jacob Bitran
- Hematology and Oncology, Advocate Lutheran General Hospital, Park Ridge, USA
| |
Collapse
|
2
|
All that glitters is not LGL Leukemia. Leukemia 2022; 36:2551-2557. [PMID: 36109593 DOI: 10.1038/s41375-022-01695-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
LGL disorders are rare hematological neoplasias with remarkable phenotypic, genotypic and clinical heterogeneity. Despite these constraints, many achievements have been recently accomplished in understanding the aberrant pathways involved in the LGL leukemogenesis. In particular, compelling evidence implicates STAT signaling as a crucial player of the abnormal cell survival. As interest increases in mapping hematological malignancies by molecular genetics, the relevance of STAT gene mutations in LGL disorders has emerged thanks to their association with discrete clinical features. STAT3 and STAT5b mutations are recognized as the most common gain-of-function genetic lesions up to now identified in T-LGL leukemia (T-LGLL) and are actually regarded as the hallmark of this disorder, also contributing to further refine its subclassification. However, from a clinical perspective, the relationships between T-LGLL and other borderline and overlapping conditions, including reactive cell expansions, clonal hematopoiesis of indeterminate potential (CHIP) and unrelated clonopathies are not fully established, sometimes making the diagnosis of T cell malignancy challenging. In this review specifically focused on the topic of clonality of T-LGL disorders we will discuss the rationale of the appropriate steps to aid in distinguishing LGLL from its mimics, also attempting to provide new clues to stimulate further investigations designed to move this field forward.
Collapse
|
3
|
Persistent Large Granular Lymphocyte Clonal Expansions: “The Root of Many Evils”—And of Some Goodness. Cancers (Basel) 2022; 14:cancers14051340. [PMID: 35267648 PMCID: PMC8909662 DOI: 10.3390/cancers14051340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Large granular lymphocyte leukemia (LGLL) is a chronic disorder of either mature T or NK lymphocytes. As clonal expansions of the immune system cells, difficulties in the distinction between a true neoplasia and a physiological reactive process have been common since its description. We review here the different conditions associated with persistent clonal LGL expansions and discuss their potential origin and whether they can modulate the clinical features. Abstract Large granular lymphocyte leukemia (LGLL) is a chronic disease of either mature phenotype cytotoxic CD3+ T lymphocytes or CD3- NK cells. LGLL diagnosis is hampered by the fact that reactive persistent clonal LGL expansions may fulfill the current criteria for LGLL diagnoses. In addition to the presence of characteristic clinical and hematological signs such as anemia or neutropenia, LGLL/LGL clonal expansions have been associated with an array of conditions/disorders. We review here the presence of these persistent clonal expansions in autoimmune, hematological disorders and solid neoplasms and after hematopoietic stem cell transplantation. These associations are a unique translational research framework to discern whether these persistently expanded LGL clones are causes or consequences of the concomitant clinical settings and, more importantly, when they should be targeted.
Collapse
|
4
|
Large Granular Lymphocytosis With Cytopenias After Allogeneic Blood or Marrow Transplantation: Clinical Characteristics and Response to Immunosuppressive Therapy. Transplant Cell Ther 2020; 27:260.e1-260.e6. [PMID: 33781530 DOI: 10.1016/j.jtct.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/21/2022]
Abstract
Large granular lymphocytosis (LGL)-or LGL leukemia-is a T- or NK-cell lymphoproliferative disorder that often results in cytopenias and autoimmune phenomena. Several studies have described LGL in a subset of patients after allogeneic blood or marrow transplantation (alloBMT), almost exclusively in the setting of asymptomatic lymphocytosis. Some have suggested an association with improved transplant-related outcomes. In contrast, clinically significant LGL after alloBMT is only described in small case reports. This study sought to assess the characteristics, significance, and response to treatment of LGL associated with unexplained anemia, thrombocytopenia, or neutropenia after alloBMT. We performed a retrospective analysis of 150 patients who were evaluated for LGL by peripheral blood flow cytometry (LGL flow) for unexplained cytopenias following initial engraftment after alloBMT from January 1 2012 to July 1, 2019. We identified patients with abnormally increased populations of LGL cells (LGL+) as assessed by Johns Hopkins Hematopathology. We collected demographic, transplantation, and LGL treatment information from electronic medical records. We compared LGL+ patients to patients with unexplained cytopenias with negative flow cytometry for LGL (LGL-) in this cohort. We also assessed change in blood counts after 4 weeks of immunosuppressive therapy in LGL+ patients. Cytopenias occurred at a median of 5.7 months (range 1-81) after alloBMT. The majority of the transplants were nonmyeloablative from haploidentical donors, and all patients received post-transplantation cyclophosphamide for graft-versus-host disease prophylaxis, consistent with the overall alloBMT characteristics at our center. We identified 70 patients with LGL and cytopenias, representing 47% of those evaluated by flow cytometry. There were no significant demographic or transplant-related differences between LGL+ patients and LGL- patients. The median age was 59, and 63% were male. LGL+ patients were more likely to have had cytomegalovirus (CMV) viremia (73% versus 28%, P < .0001), but not acute or chronic graft-versus-host disease. LGL+ patients had higher absolute lymphocyte counts (1500 versus 485/ mm3, P < .0001), a trend toward lower absolute neutrophil count (660 versus 965/mm3, P = .17), and lower neutrophil to lymphocyte ratio (0.39 versus 1.71, P < .001). There were no differences in overall survival or relapse-free survival. Of those with T-cell LGL, 45 were assessed for T-cell receptor clonality. In all, 22% were clonal, 53% oligoclonal, 4% polyclonal, and 20% indeterminate. Thirty (43%) LGL+ patients received immunosuppressive therapy (IST) for cytopenias. First-line treatment was corticosteroids for 25 (83%). Among those treated, there was an increase in median absolute neutrophil count from 720 before treatment to 1990/mm3 after 4 weeks (P = .0017). Thrombocytopenia and anemia showed at most a mild improvement with IST. LGL was a common association with otherwise unexplained cytopenias after alloBMT, almost always after prior CMV infection. LGL in the setting of cytopenias did not predict improved transplantation outcomes compared to those with cytopenias without presence of LGL. IST was effective at improving neutropenia associated with LGL after alloBMT.
Collapse
|
5
|
T-cell clones of uncertain significance are highly prevalent and show close resemblance to T-cell large granular lymphocytic leukemia. Implications for laboratory diagnostics. Mod Pathol 2020; 33:2046-2057. [PMID: 32404954 DOI: 10.1038/s41379-020-0568-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023]
Abstract
Benign clonal T-cell expansions in reactive immune responses often complicate the laboratory diagnosis T-cell neoplasia. We recently introduced a novel flow cytometry assay to detect T-cell clones in blood and bone marrow, based on the identification of a monophasic T-cell receptor (TCR) β chain constant region-1 (TRBC1) expression pattern within a phenotypically distinct TCRαβ T-cell subset. In routine laboratory practice, T-cell clones of uncertain significance (T-CUS) were detected in 42 of 159 (26%) patients without T-cell malignancy, and in 3 of 24 (13%) healthy donors. Their phenotype (CD8+/CD4-: 78%, CD4-/CD8-: 12%, CD4+/CD8+: 9%, or CD4+/CD8-: 2%) closely resembled that of 26 cases of T-cell large granular lymphocytic leukemia (T-LGLL) studied similarly, except for a much smaller clone size (p < 0.0001), slightly brighter CD2 and CD7, and slightly dimmer CD3 expression (p < 0.05). T-CUS was not associated with age, gender, comorbidities, or peripheral blood counts. TCR-Vβ repertoire analysis confirmed the clonality of T-CUS, and identified additional clonotypic CD8-positive subsets when combined with TRBC1 analysis. We hereby report the phenotypic features and incidence of clonal T-cell subsets in patients with no demonstrable T-cell neoplasia, providing a framework for the differential interpretation of T-cell clones based on their size and phenotypic properties.
Collapse
|
6
|
Somatic mTOR mutation in clonally expanded T lymphocytes associated with chronic graft versus host disease. Nat Commun 2020; 11:2246. [PMID: 32382059 PMCID: PMC7206083 DOI: 10.1038/s41467-020-16115-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Graft versus host disease (GvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we report studies of a patient with chronic GvHD (cGvHD) carrying persistent CD4+ T cell clonal expansion harboring somatic mTOR, NFKB2, and TLR2 mutations. In the screening cohort (n = 134), we detect the mTOR P2229R kinase domain mutation in two additional cGvHD patients, but not in healthy or HSCT patients without cGvHD. Functional analyses of the mTOR mutation indicate a gain-of-function alteration and activation of both mTORC1 and mTORC2 signaling pathways, leading to increased cell proliferation and decreased apoptosis. Single-cell RNA sequencing and real-time impedance measurements support increased cytotoxicity of mutated CD4+ T cells. High throughput drug-sensitivity testing suggests that mutations induce resistance to mTOR inhibitors, but increase sensitivity for HSP90 inhibitors. Our findings imply that somatic mutations may contribute to aberrant T cell proliferations and persistent immune activation in cGvHD, thereby paving the way for targeted therapies. Chronic graft versus host disease (cGvHD) is a major cause of morbidity and mortality in allogeneic bone marrow transplantation. Here the authors identify a recurrent activating mTOR mutation in expanded donor T-cell clones of 3 cGvHD patients, which suggests somatic mutations may contribute to GvHD pathogenesis and opens avenues to targeted therapies.
Collapse
|
7
|
Shi M, Jevremovic D, Otteson GE, Timm MM, Olteanu H, Horna P. Single Antibody Detection of T-Cell Receptor αβ Clonality by Flow Cytometry Rapidly Identifies Mature T-Cell Neoplasms and Monotypic Small CD8-Positive Subsets of Uncertain Significance. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:99-107. [PMID: 30972977 DOI: 10.1002/cyto.b.21782] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The diagnosis of T-cell neoplasms is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. The description of an antibody specific for one of two mutually exclusive T-cell receptor (TCR) β-chain constant regions (TRBC1) provide an opportunity to facilitate the detection of clonal TCRαβ T-cells based on TRBC-restriction. METHODS Twenty patients with mature T-cell neoplasms and 44 patients without evidence of T-cell neoplasia were studied. Peripheral blood (51), bone marrow (10), and lymph node (3) specimens were evaluated by 9-color flow cytometry including TRBC1 (CD2/CD3/CD4/CD5/CD7/CD8/CD45/TCRγδ/TRBC1 and/or CD2/CD3/CD4/CD5/CD7/CD8/CD26/CD45/TRBC1). Monophasic TRBC1 expression on any immunophenotypically distinct CD4-positive or CD8-positive/TCRγδ-negative T-cell subset was considered indicative of clonality. RESULTS Monophasic (clonal) TRBC1 expression was identified on immunophenotypically abnormal T-cells from all 20 patients with T-cell malignancies (100% sensitivity), including 17 cases with either >97% or <3% TRBC1-positive events, and three cases with monophasic homogenous TRBC1-dim expression. All immunophenotypically distinct CD4-positive and CD8-positive/TCRγδ-negative T-cell subsets from 44 patients without T-cell malignancies showed the expected mixture of TRBC1-positive and TRBC-1-negative subpopulations (non-clonal), except for seven patients (16%) with very small CD8-positive T-cell subsets exhibiting a monophasic (clonal) pattern. CONCLUSION Inclusion of a single anti-TRBC1 antibody into a diagnostic T-cell flow cytometry panel facilitates the rapid identification of T-cell neoplasms, in addition to small monotypic CD8-positive subsets of uncertain significance. © 2019 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael M Timm
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Aguilera N, Gru AA. Reexamining post-transplant lymphoproliferative disorders: Newly recognized and enigmatic types. Semin Diagn Pathol 2018; 35:236-246. [DOI: 10.1053/j.semdp.2018.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Wang HW, Raffeld M. Molecular assessment of clonality in lymphoid neoplasms. Semin Hematol 2018; 56:37-45. [PMID: 30573043 DOI: 10.1053/j.seminhematol.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023]
Abstract
Molecular clonality assays in B- and T-cell lymphoproliferative disorders often provide critical information in establishing a diagnosis of a lymphoproliferative disorder. These assays rely on the unique genetic structures that serve as assay targets, created in the process of generating immunoglobulin and T-cell receptors during B- and T-cell development. Molecular clonality assays are generally used when flow cytometry or immunohistochemistry has not sufficiently clarified the benign or malignant nature of a lymphoid proliferation. Additionally, since molecular clonality assays are tumor specific, they allow the clinician to distinguish recurrences from second tumors, and have the sensitivity to monitor minimal residual disease. In this review, we discuss the principles underlying these tests, the current approaches to clonality testing, some of the pitfalls in their interpretation, and the future applications of next generation sequencing technology to clonality testing.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Raffeld
- Molecular Diagnostics Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
10
|
Clinical features of hematological disorders with increased large granular lymphocytes (LGLs): a retrospective study. Ann Hematol 2017; 96:2113-2115. [DOI: 10.1007/s00277-017-3108-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
|
11
|
Abstract
Post-transplant lymphoproliferative disorders (PTLD) represent a heterogeneous group of diseases that occur following transplantation. Large granular lymphocytic (LGL) lymphocytosis is one type of PTLD, ranging from reactive polyclonal self-limited expansion to oligo/monoclonal lymphocytosis or even to overt leukaemia. LGL lymphocytosis in transplant recipients may present as a relatively indolent version of the condition and may be more common than reported, but its natural history and clinical course have not been well described, and the lack of a reliable classification system has limited studies on this disease. Patients with unexplained cytopenias, autoimmune manifestations, or unexpected remissions may be mislabelled. The purpose of this review was to evaluate the clinical features, immunophenotypes, etiopathogenesis, diagnosis, outcomes and treatment of post-transplantation LGL lymphocytosis. In conclusion, LGL lymphocytosis is a frequent occurrence after transplantation that correlates with certain procedural variables and post-transplant events. LGL lymphocytosis should be considered in patients with unexplained lymphocytosis or when pancytopenia develops after transplantation. The diagnosis of LGL lymphocytosis requires a demonstration of monoclonality, but clonality does not indicate malignancy. Additional studies are necessary to further delineate the potential effects of large granular lymphocytes in the long-term prognosis of post-transplant patients.
Collapse
|
12
|
Abstract
Large granular lymphocytes (LGLs) are large lymphocytes with azurophilic granules in their cytoplasm. LGLs are either natural killer (NK) cells or T lymphocytes. Expansions of the LGLs in the peripheral blood are seen in various conditions, including three clonal disorders: T-cell LGL (T-LGL) leukemia, chronic lymphoproliferative disorders of NK cells (CLPD-NK), and aggressive NK-cell leukemia (ANKL). However, the monoclonal and polyclonal expansion of LGLs has been associated with many other conditions. The present article describes these LGL disorders, with special emphasis on the clinical features, pathogenesis, and treatments of the three above-mentioned clonal disorders.
Collapse
Affiliation(s)
- Kazuo Oshimi
- Department of Medicine, Kushiro Rosai Hospital, Japan
| |
Collapse
|