1
|
Glaucocalyxin A suppresses multiple myeloma progression in vitro and in vivo through inhibiting the activation of STAT3 signaling pathway. Cancer Cell Int 2021; 21:683. [PMID: 34923957 PMCID: PMC8684694 DOI: 10.1186/s12935-021-02375-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background Multiple myeloma (MM) is the most common malignant hematological disease in the people worldwide. Glaucocalyxin A (GLA) is a bioactive ent-kauranoid diterpenoid, that is derived from Rabdosia japonica var. GLA has been demonstrated that it had various pharmacological activities, such as anti-coagulation, anti-bacterial, anti-tumor, anti-inflammation, antioxidant activities. Although GLA has effective anti-tumor properties, its effects on multiple myeloma remain unclear. The aim of this study was to examine the possible anti-cancer effects of GLA and their molecular mechanisms on MM cells in vitro and in vivo. Methods To evaluate the role of GLA on the proliferation of MM cells in vitro and in vivo, we used MTT method to detect the role of GLA on the proliferation of MM cells. Cell apoptosis and cell cycle assay were evaluated by flow cytometry. Protein expressions in GLA-treated and untreated MM cells were evaluated by western blot analyses. MM xenograft nude mice model was used to investigate the role of GLA on the proliferation of MM cells in vivo. IHC assay was used to examine the role of GLA on the MM xenograft model in vivo. Results In the present study, we firstly reported the potent anti-myeloma activity of GLA on MM cells. We found that GLA could induce apoptosis in vitro and in vivo. GLA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) and downregulate interleukin IL-6 induced STAT3 phosphorylation in MM. Overexpression of STAT3 could significantly prevent apoptosis induced by GLA; while knockdown of STAT3 enhanced it. Moreover, GLA could inhibit cell proliferation by inducing the cell cycle arrest. GLA reduced the expression of cell cycle-related proteins CCNB1, CCND1, CCND2, and CCND3 and increased the expression of p21 in MM cell lines. In addition, in the MM xenograft nude mice model, GLA exhibited very good anti-myeloma activity. Administration of GLA almost completely inhibited tumor growth within 19 days without physical toxicity. And the IHC results showed GLA significantly inhibited cell proliferation and interfered STAT3 pathway on MM xenograft model tumor tissues. Conclusions Taken together, our present research indicated that GLA inhibits the MM cell proliferation, induces MM cell apoptosis and cell cycle arrest through blocking the activation of STAT3 pathway. Thus, GLA may be a potential therapeutic candidate for MM patients in the future.
Collapse
|
2
|
Theofylaktou D, Takan I, Karakülah G, Biz GM, Zanni V, Pavlopoulou A, Georgakilas AG. Mining Natural Products with Anticancer Biological Activity through a Systems Biology Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993518. [PMID: 34422220 PMCID: PMC8376429 DOI: 10.1155/2021/9993518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Natural products, like turmeric, are considered powerful antioxidants which exhibit tumor-inhibiting activity and chemoradioprotective properties. Nowadays, there is a great demand for developing novel, affordable, efficacious, and effective anticancer drugs from natural resources. In the present study, we have employed a stringent in silico methodology to mine and finally propose a number of natural products, retrieved from the biomedical literature. Our main target was the systematic search of anticancer products as anticancer agents compatible to the human organism for future use. In this case and due to the great plethora of such products, we have followed stringent bioinformatics methodologies. Our results taken together suggest that natural products of a great diverse may exert cytotoxic effects in a maximum of the studied cancer cell lines. These natural compounds and active ingredients could possibly be combined to exert potential chemopreventive effects. Furthermore, in order to substantiate our findings and their application potency at a systems biology level, we have developed a representative, user-friendly, publicly accessible biodatabase, NaturaProDB, containing the retrieved natural resources, their active ingredients/fractional mixtures, the types of cancers that they affect, and the corresponding experimentally verified target genes.
Collapse
Affiliation(s)
- Dionysia Theofylaktou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir, Turkey
| | - Vaso Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
3
|
Toy HI, Karakülah G, Kontou PI, Alotaibi H, Georgakilas AG, Pavlopoulou A. Investigating Molecular Determinants of Cancer Cell Resistance to Ionizing Radiation Through an Integrative Bioinformatics Approach. Front Cell Dev Biol 2021; 9:620248. [PMID: 33898418 PMCID: PMC8058375 DOI: 10.3389/fcell.2021.620248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Eradication of cancer cells through exposure to high doses of ionizing radiation (IR) is a widely used therapeutic strategy in the clinical setting. However, in many cases, cancer cells can develop remarkable resistance to radiation. Radioresistance represents a prominent obstacle in the effective treatment of cancer. Therefore, elucidation of the molecular mechanisms and pathways related to radioresistance in cancer cells is of paramount importance. In the present study, an integrative bioinformatics approach was applied to three publicly available RNA sequencing and microarray transcriptome datasets of human cancer cells of different tissue origins treated with ionizing radiation. These data were investigated in order to identify genes with a significantly altered expression between radioresistant and corresponding radiosensitive cancer cells. Through rigorous statistical and biological analyses, 36 genes were identified as potential biomarkers of radioresistance. These genes, which are primarily implicated in DNA damage repair, oxidative stress, cell pro-survival, and apoptotic pathways, could serve as potential diagnostic/prognostic markers cancer cell resistance to radiation treatment, as well as for therapy outcome and cancer patient survival. In addition, our findings could be potentially utilized in the laboratory and clinical setting for enhancing cancer cell susceptibility to radiation therapy protocols.
Collapse
Affiliation(s)
- Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Panagiota I Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou, National Technical University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
4
|
Zhang J, Han X, Zhao Y, Xue X, Fan S. Mouse serum protects against total body irradiation-induced hematopoietic system injury by improving the systemic environment after radiation. Free Radic Biol Med 2019; 131:382-392. [PMID: 30578918 DOI: 10.1016/j.freeradbiomed.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) play a critical role in total body irradiation (TBI)-induced hematopoietic system injury. However, the mechanisms involved in ROS production in hematopoietic stem cells (HSCs) post TBI need to be further explored. In this study, we demonstrated that hematopoietic system injury in mice radiated with TBI was effectively alleviated when the blood circulation environment was changed via the injection of serum from non-radiated mice. Serum injection increased the survival of radiated mice and ameliorated TBI-induced hematopoietic system injury through attenuating myeloid skew, increasing HSC frequency, and promoting the reconstitution of radiated HSCs. Serum injection also decreased ROS levels in HSCs and regulated oxidative stress-related proteins. A serum proteome sequence array showed that proteins related to tissue injury and oxidative stress were regulated, and a serum-derived exosome microRNA sequence assay showed that the PI3K-Akt and Hippo signaling pathways were affected in radiated mice injected with serum from non-radiated mice. Furthermore, a significant increase in cell viability and a decrease in ROS were observed in radiated lineage-c-kit+ cells treated with serum-derived exosomes. Similarly, an improvement in the impaired differentiation of HSCs was observed in radiated mice injected with serum-derived exosomes. Taken together, our observations suggest that serum from non-radiated mice alleviates HSC injury in radiated mice by improving the systemic environment after radiation, and exosomes contribute to this radioprotective effect as important serum active component.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China.
| | - Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China; Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China
| | - Xiaolei Xue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China; Baokang Hospital, University of Tianjin Traditional Chinese Medicine, Tianjin 300193, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
5
|
Hu AX, Huang ZY, Zhang L, Shen J. Potential prognostic long non-coding RNA identification and their validation in predicting survival of patients with multiple myeloma. Tumour Biol 2017; 39:1010428317694563. [PMID: 28378636 DOI: 10.1177/1010428317694563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma, a typical hematological malignancy, is characterized by malignant proliferation of plasma cells. This study was to identify differently expressed long non-coding RNAs to predict the survival of patients with multiple myeloma efficiently. Gene expressing profiles of diagnosed patients with multiple myeloma, GSE24080 (559 samples) and GSE57317 (55 samples), were downloaded from Gene Expression Omnibus database. After processing, survival-related long non-coding RNAs were identified by Cox regression analysis. The prognosis of multiple myeloma patients with differently expressed long non-coding RNAs was predicted by Kaplan–Meier analysis. Meanwhile, stratified analysis was performed based on the concentrations of serum beta 2-microglobulin (S-beta 2m), albumin, and lactate dehydrogenase of multiple myeloma patients. Gene set enrichment analysis was performed to further explore the functions of identified long non-coding RNAs. A total of 176 long non-coding RNAs significantly related to the survival of multiple myeloma patients (p < 0.05) were identified. In dataset GSE24080 and GSE57317, there were 558 and 55 patients being clustered into two groups with significant differences, respectively. Stratified analysis indicated that prediction of the prognoses with these long non-coding RNAs was independent from other clinical phenotype of multiple myeloma. Gene set enrichment analysis–identified pathways of cell cycle, focal adhesion, and G2-M checkpoint were associated with these long non-coding RNAs. A total of 176 long non-coding RNAs, especially RP1-286D6.1, AC008875.2, MTMR9L, AC069360.2, and AL512791.1, were potential biomarkers to evaluate the prognosis of multiple myeloma patients. These long non-coding RNAs participated indispensably in many pathways associated to the development of multiple myeloma; however, the molecular mechanisms need to be further studied.
Collapse
Affiliation(s)
- Ai-Xin Hu
- Department of Orthopedic Surgery, People’s Hospital of Three Gorges University, Yichang, China
| | - Zhi-Yong Huang
- PuAi Institute, Edong Healthcare Group, Huangshi Central Hospital, Huangshi, China
| | - Lin Zhang
- Department of Spinal Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, China
| | - Jian Shen
- Changzhou Hygiene Vocational Technology School, Changzhou, China
| |
Collapse
|