1
|
Pileri SA, Tripodo C, Melle F, Motta G, Tabanelli V, Fiori S, Vegliante MC, Mazzara S, Ciavarella S, Derenzini E. Predictive and Prognostic Molecular Factors in Diffuse Large B-Cell Lymphomas. Cells 2021; 10:cells10030675. [PMID: 33803671 PMCID: PMC8003012 DOI: 10.3390/cells10030675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the commonest form of lymphoid malignancy, with a prevalence of about 40% worldwide. Its classification encompasses a common form, also termed as “not otherwise specified” (NOS), and a series of variants, which are rare and at least in part related to viral agents. Over the last two decades, DLBCL-NOS, which accounts for more than 80% of the neoplasms included in the DLBCL chapter, has been the object of an increasing number of molecular studies which have led to the identification of prognostic/predictive factors that are increasingly entering daily practice. In this review, the main achievements obtained by gene expression profiling (with respect to both neoplastic cells and the microenvironment) and next-generation sequencing will be discussed and compared. Only the amalgamation of molecular attributes will lead to the achievement of the long-term goal of using tailored therapies and possibly chemotherapy-free protocols capable of curing most (if not all) patients with minimal or no toxic effects.
Collapse
Affiliation(s)
- Stefano A. Pileri
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
- Correspondence: or
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, 90133 Palermo, Italy;
- Tumor and Microenvironment Histopathology Unit, IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Federica Melle
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Giovanna Motta
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Valentina Tabanelli
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Stefano Fiori
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Maria Carmela Vegliante
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Viale Flacco 65, 70124 Bari, Italy; (M.C.V.); (S.C.)
| | - Saveria Mazzara
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Viale Flacco 65, 70124 Bari, Italy; (M.C.V.); (S.C.)
| | - Enrico Derenzini
- Division of Haemato-Oncology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20146 Milan, Italy
| |
Collapse
|
2
|
Gifford G, Stevenson W, Best G. Combination of the dual PIM/PI3-kinase inhibitor IBL-202 and venetoclax is effective in diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 61:3165-3176. [PMID: 32723130 DOI: 10.1080/10428194.2020.1795156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Current chemoimmunotherapy is unable to cure up to 40% of patients diagnosed with diffuse large B-cell lymphoma (DLBCL). Targeting the mechanisms by which DLBCL evades apoptosis is crucial to overcoming treatment failure in this heterogeneous disease as both current and novel treatments depend on the apoptosis of malignant cells. Despite the common overexpression of BCL-2, venetoclax is ineffective in DLBCL due to MCL-1 co-expression. This is driven by pro-growth PI3-kinase signaling, which is promoted in turn by PIM kinases. In this study, the novel dual-kinase inhibitor, IBL-202, was combined with venetoclax against a panel of DLBCL cell lines that have variable expression of pro-survival proteins. The results support the efficacy of simultaneously targeting inter-related molecules to overcome apoptotic escape in this biologically heterogeneous disease. As venetoclax, pan-PIM-kinase and pan-PI3-kinase inhibitors have, or are currently being studied in clinical trials, it may be rational to consider these drugs in combination for the treatment of DLBCL.
Collapse
Affiliation(s)
- Grace Gifford
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - William Stevenson
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - Giles Best
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
3
|
Gifford GK, Gifford AJ, Chen Q, Shen Y, Gabrielli S, Gill AJ, Stevenson WS, Best OG. Fatty acid synthase and adenosine monophosphate-activated protein kinase regulate cell survival and drug sensitivity in diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 61:1810-1822. [PMID: 32249639 DOI: 10.1080/10428194.2020.1742899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acid synthesis is crucial in supporting the survival and proliferation of multiple forms of cancer. The high metabolic demands of fatty acid synthesis are regulated by the AMP-activated kinase and activity of the fatty acid synthase enzyme. In this study, the roles of these enzymes in diffuse large B-cell lymphoma (DLBCL) were investigated by genetic knock-down and pharmacological activation of AMP-activated kinase by metformin, and selective inhibition of fatty acid synthase using the novel drug Fasnall. We observed distinct heterogeneity and adaptive plasticity of lipid metabolism in a panel of DLBCL cell lines and demonstrate the therapeutic potential of inhibiting fatty acid synthesis in a subset of DLBCL cells. The translational relevance of these in vitro data is supported by the strong correlation between AMP-activated protein kinase expression in primary DLBCL samples and disease relapse. Inhibition of fatty acid synthase with Fasnall may represent a therapeutic option for DLBCL that preferentially subverts to de novo fatty acid synthesis.
Collapse
Affiliation(s)
- Grace K Gifford
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney, St Leonards, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research, University of New South Wales, Randwick, Australia.,Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, Australia
| | - Qian Chen
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney, St Leonards, Australia
| | - Yandong Shen
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney, St Leonards, Australia
| | - Sara Gabrielli
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney, St Leonards, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Research Group, The University of Sydney, Camperdown, Australia.,Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Australia
| | - William S Stevenson
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney, St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - Oliver Giles Best
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney, St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
4
|
Swerdlow SH, Cook JR. As the world turns, evolving lymphoma classifications–past, present and future. Hum Pathol 2020; 95:55-77. [DOI: 10.1016/j.humpath.2019.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022]
|
5
|
Abdulla M, Hollander P, Pandzic T, Mansouri L, Ednersson SB, Andersson P, Hultdin M, Fors M, Erlanson M, Degerman S, Petersen HM, Asmar F, Grønbæk K, Enblad G, Cavelier L, Rosenquist R, Amini R. Cell-of-origin determined by both gene expression profiling and immunohistochemistry is the strongest predictor of survival in patients with diffuse large B-cell lymphoma. Am J Hematol 2020; 95:57-67. [PMID: 31659781 PMCID: PMC6916573 DOI: 10.1002/ajh.25666] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
The tumor cells in diffuse large B‐cell lymphomas (DLBCL) are considered to originate from germinal center derived B‐cells (GCB) or activated B‐cells (ABC). Gene expression profiling (GEP) is preferably used to determine the cell of origin (COO). However, GEP is not widely applied in clinical practice and consequently, several algorithms based on immunohistochemistry (IHC) have been developed. Our aim was to evaluate the concordance of COO assignment between the Lymph2Cx GEP assay and the IHC‐based Hans algorithm, to decide which model is the best survival predictor. Both GEP and IHC were performed in 359 homogenously treated Swedish and Danish DLBCL patients, in a retrospective multicenter cohort. The overall concordance between GEP and IHC algorithm was 72%; GEP classified 85% of cases assigned as GCB by IHC, as GCB, while 58% classified as non‐GCB by IHC, were categorized as ABC by GEP. There were significant survival differences (overall survival and progression‐free survival) if cases were classified by GEP, whereas if cases were categorized by IHC only progression‐free survival differed significantly. Importantly, patients assigned as non‐GCB/ABC both by IHC and GEP had the worst prognosis, which was also significant in multivariate analyses. Double expression of MYC and BCL2 was more common in ABC cases and was associated with a dismal outcome. In conclusion, to determine COO both by IHC and GEP is the strongest outcome predictor to identify DLBCL patients with the worst outcome.
Collapse
Affiliation(s)
- Maysaa Abdulla
- Clinical and Experimental Pathology, Department of Immunology, Genetics and PathologyUppsala University Uppsala Sweden
| | - Peter Hollander
- Clinical and Experimental Pathology, Department of Immunology, Genetics and PathologyUppsala University Uppsala Sweden
| | - Tatjana Pandzic
- Medical Genetics and Genomics, Department of Immunology, Genetics and PathologyUppsala University Uppsala Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and SurgeryKarolinska Institute Stockholm Sweden
| | | | - Per‐Ola Andersson
- Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Department of MedicineSödra Älvsborg Hospital Borås Borås Sweden
| | - Magnus Hultdin
- Department of Medical BiosciencesPathology, Umeå University Umeå Sweden
| | - Maja Fors
- Department of Medical BiosciencesPathology, Umeå University Umeå Sweden
| | - Martin Erlanson
- Department of Radiation Sciences, OncologyUmeå University Umeå Sweden
| | - Sofie Degerman
- Department of Medical BiosciencesPathology, Umeå University Umeå Sweden
| | - Helga Munch Petersen
- Department of PathologyCopenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Fazila Asmar
- Department of HematologyCopenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Kirsten Grønbæk
- Department of HematologyCopenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Gunilla Enblad
- Experimental and Clinical Oncology, Department of Immunology, Genetics and PathologyUppsala University Uppsala Sweden
| | - Lucia Cavelier
- Medical Genetics and Genomics, Department of Immunology, Genetics and PathologyUppsala University Uppsala Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska Institute Stockholm Sweden
| | - Rose‐Marie Amini
- Clinical and Experimental Pathology, Department of Immunology, Genetics and PathologyUppsala University Uppsala Sweden
| |
Collapse
|
6
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. Molecular pathogenesis of chronic lymphocytic leukaemia. Br J Haematol 2019; 186:668-684. [DOI: 10.1111/bjh.16102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyle Crassini
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - William S. Stevenson
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - Stephen P. Mulligan
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| | - O. Giles Best
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| |
Collapse
|
7
|
Pileri SA, Derenzini E, Melle F, Motta G, Calleri A, Antoniotti P, Maltoni V, Spagnolo S, Fiori S, Tabanelli V, Fabbri M. Dissecting diffuse large B-cell lymphomas of the "not otherwise specified" type: the impact of molecular techniques. F1000Res 2019; 7. [PMID: 30613381 PMCID: PMC6305213 DOI: 10.12688/f1000research.16755.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
The updated edition of the Classification of Tumours of Haematopoietic and Lymphoid Tissues, published in September 2017 by the World Health Organization (WHO), presents many important changes to the document published in 2008. Most of these novelties are linked to the exceptional development of biomolecular techniques during the last 10 years. To illustrate how much new technologies have contributed to the better classification of single entities, as well as the discovery of new ones, would go beyond the objectives of this work. For this reason, we will take diffuse large B-cell lymphoma as an example of the cognitive improvement produced by high-yield technologies (such as the gene expression profile, the study of copy number variation, and the definition of the mutational spectrum). The acquisition of this knowledge not only has a speculative value but also represents the elements for effective application in daily practice. On the one hand, it would allow the development of personalised therapy programs, and on the other it would promote the transition from the bench of the researcher's laboratory to the patient's bedside.
Collapse
Affiliation(s)
- Stefano A Pileri
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Enrico Derenzini
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Federica Melle
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Giovanna Motta
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Angelica Calleri
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | | | - Virginia Maltoni
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | | | - Stefano Fiori
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | | | - Marco Fabbri
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| |
Collapse
|