1
|
Robbe P, Schuh A. Genomic Stratification of Hematological Malignancies. Hemasphere 2023; 7:e902. [PMID: 37251914 PMCID: PMC10219718 DOI: 10.1097/hs9.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Pauline Robbe
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anna Schuh
- Department of Oncology, University of Oxford, United Kingdom
| |
Collapse
|
2
|
Robbe P, Ridout KE, Vavoulis DV, Dréau H, Kinnersley B, Denny N, Chubb D, Appleby N, Cutts A, Cornish AJ, Lopez-Pascua L, Clifford R, Burns A, Stamatopoulos B, Cabes M, Alsolami R, Antoniou P, Oates M, Cavalieri D, Gibson J, Prabhu AV, Schwessinger R, Jennings D, James T, Maheswari U, Duran-Ferrer M, Carninci P, Knight SJL, Månsson R, Hughes J, Davies J, Ross M, Bentley D, Strefford JC, Devereux S, Pettitt AR, Hillmen P, Caulfield MJ, Houlston RS, Martín-Subero JI, Schuh A. Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat Genet 2022; 54:1675-1689. [PMID: 36333502 PMCID: PMC9649442 DOI: 10.1038/s41588-022-01211-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Pauline Robbe
- Department of Oncology, University of Oxford, Oxford, UK
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kate E Ridout
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Helene Dréau
- Department of Oncology, University of Oxford, Oxford, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Nicholas Denny
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Niamh Appleby
- Department of Oncology, University of Oxford, Oxford, UK
| | - Anthony Cutts
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | | | - Ruth Clifford
- Department of Haematology, University Hospital Limerick, Limerick, Ireland
- Limerick Digital Cancer Research Centre, School of Medicine,University of Limerick, Limerick, Ireland
| | - Adam Burns
- Department of Oncology, University of Oxford, Oxford, UK
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC)- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maite Cabes
- Oxford Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Reem Alsolami
- Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Doriane Cavalieri
- Department of Haematology, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anika V Prabhu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ron Schwessinger
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Daisy Jennings
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | | | - Martí Duran-Ferrer
- Biomedical Epigenomics Group, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Samantha J L Knight
- Oxford University Clinical Academic Graduate School, University of Oxford Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Jim Hughes
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James Davies
- Department of Medicine, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mark Ross
- Illumina Cambridge Ltd., Cambridge, UK
| | | | - Jonathan C Strefford
- Cancer Genomics, Cancer Sciences, Faculty of Medicine, Group University of Southampton, Southampton, UK
| | - Stephen Devereux
- King's College Hospital, NHS Foundation Trust, London, UK
- Kings College London, London, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - Mark J Caulfield
- Genomics England, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - José I Martín-Subero
- Human Technopole, Milan, Italy
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Rosenquist R, Cuppen E, Buettner R, Caldas C, Dreau H, Elemento O, Frederix G, Grimmond S, Haferlach T, Jobanputra V, Meggendorfer M, Mullighan CG, Wordsworth S, Schuh A. Clinical utility of whole-genome sequencing in precision oncology. Semin Cancer Biol 2022; 84:32-39. [PMID: 34175442 DOI: 10.1016/j.semcancer.2021.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Precision diagnostics is one of the two pillars of precision medicine. Sequencing efforts in the past decade have firmly established cancer as a primarily genetically driven disease. This concept is supported by therapeutic successes aimed at particular pathways that are perturbed by specific driver mutations in protein-coding domains and reflected in three recent FDA tissue agnostic cancer drug approvals. In addition, there is increasing evidence from studies that interrogate the entire genome by whole-genome sequencing that acquired global and complex genomic aberrations including those in non-coding regions of the genome might also reflect clinical outcome. After addressing technical, logistical, financial and ethical challenges, national initiatives now aim to introduce clinical whole-genome sequencing into real-world diagnostics as a rational and potentially cost-effective tool for response prediction in cancer and to identify patients who would benefit most from 'expensive' targeted therapies and recruitment into clinical trials. However, so far, this has not been accompanied by a systematic and prospective evaluation of the clinical utility of whole-genome sequencing within clinical trials of uniformly treated patients of defined clinical outcome. This approach would also greatly facilitate novel predictive biomarker discovery and validation, ultimately reducing size and duration of clinical trials and cost of drug development. This manuscript is the third in a series of three to review and critically appraise the potential and challenges of clinical whole-genome sequencing in solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands; Center for Molecular Medicine and Oncode Institute, University Medical Center, Utrecht, The Netherlands
| | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, United Kingdom
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, United States; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, United States
| | - Geert Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | | | - Vaidehi Jobanputra
- New York Genome Center, 101 Avenue of the Americas, New York, NY 100132, United States; Columbia University Medical Center, 650 W 168th St, New York, NY 10032, United States
| | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, United States
| | - Sarah Wordsworth
- Nuffield Department of Population Health and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Anna Schuh
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma. Blood Adv 2022; 6:5009-5023. [PMID: 35675515 PMCID: PMC9631623 DOI: 10.1182/bloodadvances.2021006720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
Linked-read WGS can be performed without DNA purification and allows for resolution of the diverse structural variants found in MM. Linked-read WGS can, as a standalone assay, provide comprehensive genetics in myeloma and other diseases with complex genomes.
Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
Collapse
|
5
|
Berglund E, Barbany G, Orsmark-Pietras C, Fogelstrand L, Abrahamsson J, Golovleva I, Hallböök H, Höglund M, Lazarevic V, Levin LÅ, Nordlund J, Norèn-Nyström U, Palle J, Thangavelu T, Palmqvist L, Wirta V, Cavelier L, Fioretos T, Rosenquist R. A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias. Front Med (Lausanne) 2022; 9:842507. [PMID: 35402448 PMCID: PMC8987911 DOI: 10.3389/fmed.2022.842507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Whole-genome sequencing (WGS) and whole-transcriptome sequencing (WTS), with the ability to provide comprehensive genomic information, have become the focal point of research interest as novel techniques that can support precision diagnostics in routine clinical care of patients with various cancer types, including hematological malignancies. This national multi-center study, led by Genomic Medicine Sweden, aims to evaluate whether combined application of WGS and WTS (WGTS) is technically feasible and can be implemented as an efficient diagnostic tool in patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In addition to clinical impact assessment, a health-economic evaluation of such strategy will be performed. Methods and Analysis The study comprises four phases (i.e., retrospective, prospective, real-time validation, and follow-up) including approximately 700 adult and pediatric Swedish AML and ALL patients. Results of WGS for tumor (90×) and normal/germline (30×) samples as well as WTS for tumors only will be compared to current standard of care diagnostics. Primary study endpoints are diagnostic efficiency and improved diagnostic yield. Secondary endpoints are technical and clinical feasibility for routine implementation, clinical utility, and health-economic impact. Discussion Data from this national multi-center study will be used to evaluate clinical performance of the integrated WGTS diagnostic workflow compared with standard of care. The study will also elucidate clinical and health-economic impacts of a combined WGTS strategy when implemented in routine clinical care. Clinical Trial Registration [https://doi.org/10.1186/ISRCTN66987142], identifier [ISRCTN66987142].
Collapse
Affiliation(s)
- Eva Berglund
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Christina Orsmark-Pietras
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Clinical Genomics Gothenburg, Science for Life Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Abrahamsson
- Clinical Sciences, Queen Silvias Childrens Hospital, Gothenburg, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden
| | - Helene Hallböök
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lars-Åke Levin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Josefine Palle
- Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Tharshini Thangavelu
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Clinical Genomics Gothenburg, Science for Life Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Valtteri Wirta
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- *Correspondence: Richard Rosenquist,
| |
Collapse
|
6
|
Smetana J, Brož P. National Genome Initiatives in Europe and the United Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review. Genes (Basel) 2022; 13:556. [PMID: 35328109 PMCID: PMC8953625 DOI: 10.3390/genes13030556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.
Collapse
Affiliation(s)
- Jan Smetana
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Brož
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| |
Collapse
|
7
|
Rosenquist R. Molecular diagnostics and reporting in lymphoid malignancies: Current status and beyond. Hematol Oncol 2021; 39 Suppl 1:73-77. [PMID: 34105808 DOI: 10.1002/hon.2849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Roberts HE, Lopopolo M, Pagnamenta AT, Sharma E, Parkes D, Lonie L, Freeman C, Knight SJL, Lunter G, Dreau H, Lockstone H, Taylor JC, Schuh A, Bowden R, Buck D. Short and long-read genome sequencing methodologies for somatic variant detection; genomic analysis of a patient with diffuse large B-cell lymphoma. Sci Rep 2021; 11:6408. [PMID: 33742045 PMCID: PMC7979876 DOI: 10.1038/s41598-021-85354-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in throughput and accuracy mean that the Oxford Nanopore Technologies PromethION platform is a now a viable solution for genome sequencing. Much of the validation of bioinformatic tools for this long-read data has focussed on calling germline variants (including structural variants). Somatic variants are outnumbered many-fold by germline variants and their detection is further complicated by the effects of tumour purity/subclonality. Here, we evaluate the extent to which Nanopore sequencing enables detection and analysis of somatic variation. We do this through sequencing tumour and germline genomes for a patient with diffuse B-cell lymphoma and comparing results with 150 bp short-read sequencing of the same samples. Calling germline single nucleotide variants (SNVs) from specific chromosomes of the long-read data achieved good specificity and sensitivity. However, results of somatic SNV calling highlight the need for the development of specialised joint calling algorithms. We find the comparative genome-wide performance of different tools varies significantly between structural variant types, and suggest long reads are especially advantageous for calling large somatic deletions and duplications. Finally, we highlight the utility of long reads for phasing clinically relevant variants, confirming that a somatic 1.6 Mb deletion and a p.(Arg249Met) mutation involving TP53 are oriented in trans.
Collapse
Affiliation(s)
- Hannah E Roberts
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maria Lopopolo
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Duncan Parkes
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lorne Lonie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Colin Freeman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Samantha J L Knight
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Epidemiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Helene Dreau
- Oxford University Hospitals NHS Trust, Oxford, UK
- Department of Haematology, University of Oxford, Oxford, UK
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
| | - Anna Schuh
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
- Oxford University Hospitals NHS Trust, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Buck
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Samsom KG, Bosch LJW, Schipper LJ, Roepman P, de Bruijn E, Hoes LR, Riethorst I, Schoenmaker L, van der Kolk LE, Retèl VP, Frederix GWJ, Buffart TE, van der Hoeven JJM, Voest EE, Cuppen E, Monkhorst K, Meijer GA. Study protocol: Whole genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE). BMC Med Genomics 2020; 13:169. [PMID: 33167975 PMCID: PMC7654005 DOI: 10.1186/s12920-020-00814-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND 'Precision oncology' can ensure the best suitable treatment at the right time by tailoring treatment towards individual patient and comprehensive tumour characteristics. In current molecular pathology, diagnostic tests which are part of the standard of care (SOC) only cover a limited part of the spectrum of genomic changes, and often are performed in an iterative way. This occurs at the expense of valuable patient time, available tissue sample, and interferes with 'first time right' treatment decisions. Whole Genome Sequencing (WGS) captures a near complete view of genomic characteristics of a tumour in a single test. Moreover, WGS facilitates faster implementation of new treatment relevant biomarkers. At present, WGS mainly has been applied in study settings, but its performance in a routine diagnostic setting remains to be evaluated. The WIDE study aims to investigate the feasibility and validity of WGS-based diagnostics in clinical practice. METHODS 1200 consecutive patients in a single comprehensive cancer centre with (suspicion of) a metastasized solid tumour will be enrolled with the intention to analyse tumour tissue with WGS, in parallel to SOC diagnostics. Primary endpoints are (1) feasibility of implementation of WGS-based diagnostics into routine clinical care and (2) clinical validation of WGS by comparing identification of treatment-relevant variants between WGS and SOC molecular diagnostics. Secondary endpoints entail (1) added clinical value in terms of additional treatment options and (2) cost-effectiveness of WGS compared to SOC diagnostics through a Health Technology Assessment (HTA) analysis. Furthermore, the (3) perceived impact of WGS-based diagnostics on clinical decision making will be evaluated through questionnaires. The number of patients included in (experimental) therapies initiated based on SOC or WGS diagnostics will be reported with at least 3 months follow-up. The clinical efficacy is beyond the scope of WIDE. Key performance indicators will be evaluated after every 200 patients enrolled, and procedures optimized accordingly, to continuously improve the diagnostic performance of WGS in a routine clinical setting. DISCUSSION WIDE will yield the optimal conditions under which WGS can be implemented in a routine molecular diagnostics setting and establish the position of WGS compared to SOC diagnostics in routine clinical care.
Collapse
Affiliation(s)
- Kris G Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda J W Bosch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luuk J Schipper
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Louisa R Hoes
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | - Tineke E Buffart
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Emile E Voest
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Jondreville L, Krzisch D, Chapiro E, Nguyen‐Khac F. The complex karyotype and chronic lymphocytic leukemia: prognostic value and diagnostic recommendations. Am J Hematol 2020; 95:1361-1367. [PMID: 32777106 DOI: 10.1002/ajh.25956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Chromosomal abnormalities are frequently observed in patients with chronic lymphocytic leukemia (CLL) and have prognostic value. Deletions of the short arm of chromosome 17 (and/or mutations TP53) predict resistance to chemoimmunotherapy and shorter progression-free survival after targeted therapies. Although the complex karyotype (CK) is strongly predictive of a poor prognosis in hematologic malignancies such acute myeloid leukemia or myelodysplastic syndrome, its value in CLL is subject to debate. Here, we review the literature on the CK in CLL and examine its prognostic value with different treatments. We also propose a standardized method for defining a CK in all types of hematopoietic neoplasm.
Collapse
Affiliation(s)
- Ludovic Jondreville
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
| | - Daphné Krzisch
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
| | - Elise Chapiro
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
- Service dʼHématologie Biologique Sorbonne Université, Hôpital Pitié‐Salpêtrière, APHP Paris France
| | - Florence Nguyen‐Khac
- INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team Centre de Recherche des Cordeliers Paris France
- Service dʼHématologie Biologique Sorbonne Université, Hôpital Pitié‐Salpêtrière, APHP Paris France
| |
Collapse
|
11
|
IgCaller for reconstructing immunoglobulin gene rearrangements and oncogenic translocations from whole-genome sequencing in lymphoid neoplasms. Nat Commun 2020; 11:3390. [PMID: 32636395 PMCID: PMC7341758 DOI: 10.1038/s41467-020-17095-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin (Ig) gene rearrangements and oncogenic translocations are routinely assessed during the characterization of B cell neoplasms and stratification of patients with distinct clinical and biological features, with the assessment done using Sanger sequencing, targeted next-generation sequencing, or fluorescence in situ hybridization (FISH). Currently, a complete Ig characterization cannot be extracted from whole-genome sequencing (WGS) data due to the inherent complexity of the Ig loci. Here, we introduce IgCaller, an algorithm designed to fully characterize Ig gene rearrangements and oncogenic translocations from short-read WGS data. Using a cohort of 404 patients comprising different subtypes of B cell neoplasms, we demonstrate that IgCaller identifies both heavy and light chain rearrangements to provide additional information on their functionality, somatic mutational status, class switch recombination, and oncogenic Ig translocations. Our data thus support IgCaller to be a reliable alternative to Sanger sequencing and FISH for studying the genetic properties of the Ig loci. Immunoglobulin (Ig) rearrangement and translocation information are usually obtained by targeted sequencing of the respective loci. Here, the authors present the IgCaller algorithm, which extracts Ig heavy and light chain genetic properties from short-read whole-genome sequencing results to provide a feasible alternative to direct sequencing.
Collapse
|
12
|
Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:149-177. [PMID: 31977296 DOI: 10.1146/annurev-pathmechdis-012419-032810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10-15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; ,
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
13
|
Baer C, Walter W, Hutter S, Twardziok S, Meggendorfer M, Kern W, Haferlach T, Haferlach C. "Somatic" and "pathogenic" - is the classification strategy applicable in times of large-scale sequencing? Haematologica 2019; 104:1515-1520. [PMID: 31273095 PMCID: PMC6669162 DOI: 10.3324/haematol.2019.218917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
|
14
|
Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood 2019; 133:1205-1216. [PMID: 30602617 DOI: 10.1182/blood-2018-09-873083] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.
Collapse
|
15
|
Cavallari M, Cavazzini F, Bardi A, Volta E, Melandri A, Tammiso E, Saccenti E, Lista E, Quaglia FM, Urso A, Laudisi M, Menotti E, Formigaro L, Dabusti M, Ciccone M, Tomasi P, Negrini M, Cuneo A, Rigolin GM. Biological significance and prognostic/predictive impact of complex karyotype in chronic lymphocytic leukemia. Oncotarget 2018; 9:34398-34412. [PMID: 30344950 PMCID: PMC6188145 DOI: 10.18632/oncotarget.26146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022] Open
Abstract
The complex karyotype (CK) is an established negative prognostic marker in a number of haematological malignancies. After the introduction of effective mitogens, a growing body of evidence has suggested that the presence of 3 or more aberrations by conventional banding analysis (CBA) is associated with an unfavorable outcome in chronic lymphocytic leukemia (CLL). Thus, the importance of CBA was recognized by the 2018 guidelines of the International Workshop on CLL, which proposed the introduction of CBA in clinical trials to validate the value of karyotype aberrations. Indeed, a number of observational studies showed that cytogenetic aberrations and, particularly, the CK may have a negative independent impact on objective outcome measures (i.e. time to first treatment, progression free survival, time to chemorefractoriness and overall survival) both in patients treated with chemoimmunotherapy and, possibly, in patients receiving novel mechanism-based treatment. Here, we set out to present the scientific evidence supporting the significance of CK as a prognostic marker in CLL and to discuss the biological basis showing that the CK is a consequence of genomic instability.
Collapse
Affiliation(s)
- Maurizio Cavallari
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Francesco Cavazzini
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonella Bardi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Eleonora Volta
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Aurora Melandri
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elisa Tammiso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Enrico Lista
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Maria Quaglia
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonio Urso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Michele Laudisi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elisa Menotti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Luca Formigaro
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Melissa Dabusti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Maria Ciccone
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Paolo Tomasi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Gian Matteo Rigolin
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| |
Collapse
|