1
|
Kimura H, Onozawa M, Matsukawa T, Goto H, Kondo T, Teshima T. Relative impact of THPO mutation causing hereditary thrombocythemia. Exp Hematol 2024; 134:104208. [PMID: 38548144 DOI: 10.1016/j.exphem.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024]
Abstract
Germline mutations of THPO were reported as causes of hereditary thrombocythemia. Six previously reported distinct sites of the mutation were clustered at the 5`-untranslated region or the exon 3 splicing donor site of the THPO gene. Each mutation was identified in an independent pedigree, and the differences between the mutations were not compared. We cloned six distinct THPO mutations (THPO c.-47delG, THPO c.-31G>T, THPO c.13G>A, THPO c.13+1G>A, THPO c.13+2T>C, and THPO c.13+5G>A) and compared the molecular mechanisms that underlie the increased production of THPO protein. At the transcript level, all of the mutations except THPO c.-47delG showed an exon 3 skipping transcript, including two mutations (THPO c.-31G>T and THPO c.13+5G>A) that were distant from the splicing donor site. THPO c.-47delG showed the same full-length transcript as that of the wild-type transcript. At the protein level, all mutations resulted in a higher level of production of thrombopoietin (THPO) protein compared with wild-type THPO. There are only two distinct patterns of mechanisms for increased production of THPO: exon 3 skipping that deleted upstream suppressive open reading frame (ORF)7 and one base deletion that shifted ORF7 to connect to the initial codon of THPO in-frame. The common mechanisms of hereditary thrombocytosis due to THPO mutations are unleashed THPO translations, which are usually suppressed by upstream out-of-frame ORF7.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| | - Toshihiro Matsukawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Kimura H, Onozawa M, Hashiguchi J, Hidaka D, Kanaya M, Matsukawa T, Okada H, Kondo T, Matsuno Y, Teshima T. Hereditary thrombocythemia due to splicing donor site mutation of THPO in a Japanese family. Ann Hematol 2024; 103:89-96. [PMID: 37962621 DOI: 10.1007/s00277-023-05523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Thrombopoietin (THPO) is an essential factor for platelet production. Hereditary thrombocythemia (HT) is caused by a germline mutation of THPO, MPL, or JAK2 and is inherited in an autosomal-dominant manner. We identified a Japanese family with HT due to a point mutation of the splicing donor site of the THPO gene (THPO c.13 + 1G > A). Bone marrow biopsy showed increased megakaryocytes mimicking essential thrombocythemia. One affected family member developed chronic myeloid leukemia. We cloned the mutation and developed mutated and wild type THPO expression vectors. Molecular analysis showed that the mutation causes an exon 3 skipping transcript of THPO that abrogates a suppressive untranslated upstream open reading frame. Although the transcript levels of THPO mRNA were comparable, mutated transcripts were more efficiently translated and THPO protein expression was significantly higher than that of the wild type.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan.
| | - Junichi Hashiguchi
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Minoru Kanaya
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Hiromi Okada
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| |
Collapse
|
3
|
Kimura H, Onozawa M, Teshima T. Genetic background of thrombocytosis in mice mimicking hereditary thrombocytosis in humans. Platelets 2023; 34:2276697. [PMID: 37941443 DOI: 10.1080/09537104.2023.2276697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Novel THPO variant in hereditary thrombocytopenia: A potential candidate variant for predisposition to myeloid neoplasm. PLoS One 2022; 17:e0271624. [PMID: 36534659 PMCID: PMC9762605 DOI: 10.1371/journal.pone.0271624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hereditary thrombocytopenia is a heterogeneous group of congenital disorders with a wide range of symptoms depending on the severity of platelet dysfunction or thrombocytopenia. Because of its clinical phenotypes and the bone marrow morphology associated with this condition, hereditary thrombocytopenia can be misdiagnosed as primary immune thrombocytopenia and myelodysplastic syndrome. Therefore, genetic evidence is necessary for the accurate diagnosis of hereditary thrombocytopenia. Refractory cytopenia of childhood is a subgroup of myelodysplastic syndrome that was added to the World Health Organization classification in 2008. To investigate the germline and somatic variants associated with refractory cytopenia of childhood, we performed targeted multigene sequencing in three patients with refractory cytopenia of childhood. Of the three patients, one progressed from megakaryocytic hypoplasia with thrombocytopenia, and targeted multigene sequencing revealed THPO variants in this patient and his sister. We propose that the monoallelic deletion of THPO is a potential candidate for germline predisposition to myeloid malignancy.
Collapse
|
5
|
Alzahrani M, Al Turki S, Al Rajban W, Alshalati F, Almodaihsh F, Abuelgasim KA, Alahmari B, Al Bogami T, Ali O, Al Harbi T, AlBalwi MA, Alotaibi M, Aleem A, Al Asker A, Al Mugairi A. Pro106Leu MPL mutation is associated with thrombocytosis and a low risk of thrombosis, splenomegaly and marrow fibrosis. Platelets 2022; 33:1220-1227. [PMID: 35791502 DOI: 10.1080/09537104.2022.2091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The P106L mutation in the human myeloproliferative leukemia virus oncogene (MPL) was shown to be associated with hereditary thrombocythemia in Arabs. The clinical and bone marrow (BM) features of P106L mutation are unknown. Genetic databases at two tertiary hospitals in Saudi Arabia were searched to identify patients with the MPL P106L mutation. Clinical data were collected retrospectively and the BM aspirates and biopsies were independently reviewed by two hematopathologists. In total, 115 patients were included. Median age was 33 years of which 31 patients were pediatric and 65 were female. The mutation was homozygous in 87 patients. Thrombocytosis was documented in 107 patients, with a median platelet count of 667 × 109/L. The homozygous genotype was associated with a higher platelet count. Thirty-three patients had an evaluable BM and clustering of megakaryocytes was observed in 30/33 patients. At the time of last follow-up, 114 patients were alive. The median follow-up was 7.8 years from the time of thrombocytosis. No patients developed disease progression to myelofibrosis. The P106L mutation was associated with marked thrombocytosis at a younger age and with a low risk of thrombosis, splenomegaly, and marrow fibrosis. The BM demonstrated normal or hypocellular marrow with megakaryocyte clusters.
Collapse
Affiliation(s)
- Musa Alzahrani
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Al Turki
- Department of Pathology and Laboratory Medicine, Molecular Pathology Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Waleed Al Rajban
- Department of Pathology and Laboratory Medicine, Molecular Pathology Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Fatimah Alshalati
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Almodaihsh
- Department of Pathology and Laboratory Medicine, Hematopathology Unit, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Khadega A Abuelgasim
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Adult Hematology and Stem Cell Transplant, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Bader Alahmari
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Adult Hematology and Stem Cell Transplant, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Department of Oncology, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Thamer Al Bogami
- Department of Pathology and Laboratory Medicine, Hematopathology Unit, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Osama Ali
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Adult Hematology and Stem Cell Transplant, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Talal Al Harbi
- Department of Pediatric Hematology and Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed A AlBalwi
- Department of Pathology and Laboratory Medicine, Molecular Pathology Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Maram Alotaibi
- Department of Pathology and Laboratory Medicine, Molecular Genetics Unit, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Aamer Aleem
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al Asker
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Division of Adult Hematology and Stem Cell Transplant, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Areej Al Mugairi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, Hematopathology Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|