1
|
Xue S, Sun HP, Huang XB, Chen X, Wang T, Ma W, Tian Y, Pan ZL, Li LH, Zhang L, Liu HX, Cao XY. Characteristics and literature review of ETV6::ABL1 fusion gene-positive acute myeloid leukemia. Int J Hematol 2024; 119:564-572. [PMID: 38441775 DOI: 10.1007/s12185-024-03729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE To describe the features of ETV6::ABL1 AML as well as the clinical treatment and outcomes. METHODS Clinical data were collected from three patients diagnosed with ETV6::ABL1 AML at Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital. Their clinical and laboratory features were analyzed, and the treatment process and outcomes were described. Ten reported cases of ETV6::ABL1 AML from the literature were also included for analysis. RESULTS The median age of the patients was 34 years, and 2 patients were male. No patient had a history of blood disorders before diagnosis. After relapse, they were referred to our hospital, where the ETV6::ABL1 gene was detected. Unfortunately, Patient 1 died rapidly after leukemia relapse due to severe infection. Patients 2 and 3 received salvage therapy with a dasatinib-containing regimen, followed by allo-HSCT, and are currently alive and disease-free. CONCLUSION ETV6::ABL1 is a rare but recurrent genetic aberration in AML, and the combined use of fluorescence in situ hybridization and PCR can better identify this fusion gene. Patients carrying ETV6::ABL1 have a high relapse rate and a poor prognosis. TKIs are a reasonable treatment option for this group, and allo-HSCT may be curative.
Collapse
Affiliation(s)
- Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Hui-Peng Sun
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Xiao-Bing Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xue Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Tong Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Wei Ma
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Yanjiao Economic and Technological Development Zone, Si Pu Lan Road, Langfang, 065201, Hebei, People's Republic of China
| | - Yao Tian
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi-Lan Pan
- Department of Hematology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| | - Li-Hong Li
- Department of Hematology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
- Department of Hematology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lu Zhang
- Department of Hematology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PekingBeijing, China
| | - Hong-Xing Liu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Yanjiao Economic and Technological Development Zone, Si Pu Lan Road, Langfang, 065201, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Tan KW, Zhu YY, Qiu QC, Wang M, Shen HJ, Huang SM, Cao HY, Wan CL, Li YY, Dai HP, Xue SL. Rapid molecular response to dasatinib in Ph-like acute lymphoblastic leukemia patients with ABL1 rearrangements: case series and literature review. Ann Hematol 2023; 102:2397-2402. [PMID: 37103615 DOI: 10.1007/s00277-023-05236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype with a poor prognosis under conventional chemotherapy. Ph-like ALL has a similar gene expression profile to Philadelphia chromosome-positive (Ph+) ALL, but is highly heterogeneous in terms of genomic alterations. Approximately 10-20% of patients with Ph-like ALL harbor ABL class (e.g. ABL1, ABL2, PDGFRB, and CSF1R) rearrangements. Additional genes that form fusion genes with ABL class genes are still being researched. These aberrations result from rearrangements including chromosome translocations or deletions and may be targets of tyrosine kinase inhibitors (TKIs). However, due to the heterogeneity and rarity of each fusion gene in clinical practice, there is limited data on the efficacy of tyrosine kinase inhibitors. Here, we report three cases of Ph-like B-ALL with ABL1 rearrangements treated with the dasatinib backbone for the CNTRL::ABL1, LSM14A::ABL1, and FOXP1::ABL1 fusion genes. All three patients achieved rapid and profound remission with no significant adverse events. Our findings suggest that dasatinib is a potent TKI for the treatment of ABL1-rearranged Ph-like ALL and can be used as a first-line treatment option for such patients.
Collapse
Affiliation(s)
- Kai-Wen Tan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yi-Yan Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qiao-Cheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Si-Man Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Han-Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan-Yan Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Li Z, Sun MZ, Lv X, Guo C, Liu S. ETV6 Regulates Hemin-Induced Erythroid Differentiation of K562 Cells through Mediating the Raf/MEK/ERK Pathway. Biol Pharm Bull 2022; 45:250-259. [PMID: 35228392 DOI: 10.1248/bpb.b21-00632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a member of transcription factor E-Twenty Six (ETS) family, ETS variant 6 (ETV6) plays significant role in hematopoiesis and embryonic development. ETV6 dysexpression also involved in the occurrence, development and progression of cancers and leukemia. In current work, we hypothesized that ETV6 plays a role in erythroid differentiation of chronic myeloid leukemia (CML). We found the protein expression level of ETV6 was significantly upregulated during hemin-induced erythroid differentiation of K562 cells. Moreover, overexpression of ETV6 inhibited erythroid differentiation in hemin-induced K562 cells with decreased numbers of benzidine-positive cells and decreased expression levels of erythroid differentiation specific markers glycophorin (GPA), CD71, hemoglobin A (HBA), α-globin, γ-globin and ε-globin. Conversely, ETV6 knockdown promoted erythroid differentiation in hemin-induced K562 cells. Furthermore, ETV6 expression level slightly positively with the proliferation capacity of K562 cells treated with hemin. Mechanistically, ETV6 overexpression inhibited fibrosarcoma/mitogen activated extracellular signal-regulated kinase/extracellular regulated protein kinase (Raf/MEK/ERK) pathway, ETV6 knockdown activated the Raf/MEK/ERK pathway. Collectively, the current work demonstrates that ETV6 plays an inhibitory role in the regulation of K562 cell erythroid differentiation via Raf/MEK/ERK pathway, it would be a potentially therapeutic target for dyserythropoiesis.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University
| | - Xinxin Lv
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University
| | - Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University
| |
Collapse
|