1
|
Jacobs K, Moerman A, Vandepoele K, Abeele TVD, De Mulder K, Steel E, Clauwaert M, Louagie H. Variant-specific BCR::ABL1 quantification discrepancy in chronic myeloid leukemia. Int J Lab Hematol 2024. [PMID: 38840510 DOI: 10.1111/ijlh.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Accurate quantification of the BCR::ABL1 fusion gene in whole blood is pivotal for the clinical management of chronic myeloid leukemia (CML) patients. The fusion protein encoded by BCR::ABL1 can vary in size, depending on the BCR and/or ABL1 gene breakpoint. The vast majority of CML patients have a p210 BCR::ABL1 fusion gene (M-BCR), which can be attributed to the presence of either e14a2 (b3a2) or e13a2 (b2a2) mRNA transcript junctions. METHODS Twenty-five CML samples were analyzed in two different ISO15189-accredited centers that both use an Europe Against Cancer-based quantitative polymerase chain reaction (qPCR) protocol. Reanalysis of the sample set with transcript-specific standard curves and digital droplet PCR (ddPCR) were performed. RESULTS qPCR quantification revealed a significant (up to 1 log) difference specifically for the e13a2 transcript variant in contrast to e14a2 transcripts (Hodges-Lehman 4.29; p < 0.001). Reanalysis of the sample set with transcript-specific standard curves abolishes the initial transcript-specific difference (Hodges-Lehman 0.003; p = 0.8192). Comparison of transcript-specific qPCR results of both centers with ddPCR, an absolute quantification method, showed a statically significant association, especially in the lower range, indicating the clinical utility of transcript-specific or absolute quantification methods. CONCLUSION Our data show that differences between transcript-specific quantification might exist between centers, leading to potential clinical impact on the follow-up of CML patients. The use of transcript-specific standard curves for qPCR quantification, or absolute quantification, can significantly reduce these differences. Specific attention should be applied to the interpretation of quantification differences of CML patients that switch between diagnostic centers.
Collapse
Affiliation(s)
- Koen Jacobs
- Clinical Laboratory, AZ Sint-Lucas Hospital Ghent, Ghent, Belgium
| | | | - Karl Vandepoele
- Clinical Biology - Molecular Hematology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Eva Steel
- Hematology, AZ ST. Lucas Hospital Ghent, Ghent, Belgium
| | | | - Henk Louagie
- Clinical Laboratory, AZ Sint-Lucas Hospital Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Kwaśnik P, Zaleska J, Link-Lenczowska D, Zawada M, Wysogląd H, Ochrem B, Bober G, Wasilewska E, Hus I, Szarejko M, Prejzner W, Grzybowska-Izydorczyk O, Klonowska-Szymczyk A, Mędraś E, Kiełbus M, Sacha T, Giannopoulos K. High Level of CD8 +PD-1 + Cells in Patients with Chronic Myeloid Leukemia Who Experienced Loss of MMR after Imatinib Discontinuation. Cells 2024; 13:723. [PMID: 38667336 PMCID: PMC11048908 DOI: 10.3390/cells13080723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Treatment-free remission (TFR) is achieved in approximately half of chronic myeloid leukemia (CML) patients treated with tyrosine kinase inhibitors. The mechanisms responsible for TFR maintenance remain elusive. This study aimed to identify immune markers responsible for the control of residual CML cells early in the TFR (at 3 months), which may be the key to achieving long-term TFR and relapse-free survival (RFS) after discontinuation of imatinib. Our study included 63 CML patients after imatinib discontinuation, in whom comprehensive analysis of changes in the immune system was performed by flow cytometry, and changes in the BCR::ABL1 transcript levels were assessed by RQ-PCR and ddPCR. We demonstrated a significant increase in the percentage of CD8+PD-1+ cells in patients losing TFR. The level of CD8+PD-1+ cells is inversely related to the duration of treatment and incidence of deep molecular response (DMR) before discontinuation. Analysis of the ROC curve showed that the percentage of CD8+PD-1+ cells may be a significant factor in early molecular recurrence. Interestingly, at 3 months of TFR, patients with the e13a2 transcript had a significantly higher proportion of the PD-1-expressing immune cells compared to patients with the e14a2. Our results suggest the important involvement of CD8+PD-1+ cells in the success of TFR and may help in identifying a group of patients who could successfully discontinue imatinib.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Female
- Male
- Middle Aged
- Adult
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Aged
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Young Adult
Collapse
Affiliation(s)
- Paulina Kwaśnik
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.K.)
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.K.)
| | - Dorota Link-Lenczowska
- Department of Hematology Diagnostics, Jagiellonian University Hospital in Kraków, 30-688 Kraków, Poland
| | - Magdalena Zawada
- Department of Hematology Diagnostics, Jagiellonian University Hospital in Kraków, 30-688 Kraków, Poland
| | - Hubert Wysogląd
- Department of Hematology, Jagiellonian University Hospital in Kraków, 30-688 Kraków, Poland
| | - Bogdan Ochrem
- Department of Hematology, Jagiellonian University Hospital in Kraków, 30-688 Kraków, Poland
| | - Grażyna Bober
- Department of Hematooncology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, 40-032 Katowice, Poland
| | - Ewa Wasilewska
- Department of Hematology, Medical University of Białystok, 15-276 Białystok, Poland
| | - Iwona Hus
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
- Department of Clinical Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Szarejko
- Department of Hematology and Transplantology, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Witold Prejzner
- Department of Hematology and Transplantology, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | | | | | - Ewa Mędraś
- Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation in Wrocław, 50-367 Wrocław, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.K.)
| | - Tomasz Sacha
- Chair of Hematology, Jagiellonian University Medical College in Kraków, 31-501 Kraków, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.K.)
| |
Collapse
|
3
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Exploration of treatment-free remission in CML, based on molecular monitoring. Cancer Med 2024; 13:e6849. [PMID: 38133525 PMCID: PMC10807643 DOI: 10.1002/cam4.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Typical chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm caused by t(9; 22)(q34; q11) translocation. This chromosomal translocation forms the BCR::ABL1 fusion gene. The tyrosine kinase encoded by the BCR::ABL1 is considered to be the main pathogenic diver. BCR::ABL1 is not only a therapeutic target, but also a monitoring target. Monitoring of BCR::ABL1 reveals the progression of the disease and guides the next treatment. Now for CML, the target of treatment has been focused on treatment-free remission (TFR). METHODS We conducted a literature review of current developments of treatment-free remission and molecular monitoring methods. RESULTS More effective and sensitive CML monitoring methods such as digital droplet PCR (ddPCR) and next generation sequencing (NGS) have further studied the measurable residual disease (MRD) and clonal heterogeneity, which provides strong support for the exploration of TFR. We discussed some of the factors that may be related to TFR outcomes at the molecular level, along with some monitoring strategies. CONCLUSION Currently, predictive indicators for treatment-free remission outcomes and recurrence are lacking in clinical practice. In future, treatment-free remission research should focus on combining the clinical indicators with molecular monitoring and biological markers to personalize patient conditions and guide clinicians to develop individualized treatment plans, so that more patients with CML can achieve safer and stabler treatment-free remission.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Remission Induction
- Fusion Proteins, bcr-abl/genetics
- Neoplasm, Residual/genetics
- High-Throughput Nucleotide Sequencing
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
| | | | - Xin Zhou
- Wuhan Union HospitalWuhanHubeiChina
| | | | - Yu Hu
- Wuhan Union HospitalWuhanHubeiChina
| |
Collapse
|
4
|
Park H, Kim HJ, Sohn SK, Baik Y, Kim D, Lee SY, Kong JH, Kim H, Shin DY, Ahn JS, Park J, Park S, Kim I. Effect of BCR::ABL1 transcript type and droplet digital polymerase chain reaction on successful treatment-free remission in chronic myeloid leukemia patients who discontinued tyrosine kinase inhibitor. Ther Adv Hematol 2023; 14:20406207231205637. [PMID: 37929079 PMCID: PMC10624046 DOI: 10.1177/20406207231205637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 11/07/2023] Open
Abstract
Background Droplet digital polymerase chain reaction (ddPCR) is an exact method of measurement. Objectives We conducted this study to identify the prognostic factors for successful treatment-free remission in patients with chronic-phase chronic myeloid leukemia who discontinued tyrosine kinase inhibitors (TKIs). We also aimed to validate ddPCR for predicting molecular relapse. Design This is a prospective, multicenter study. Methods We enrolled patients treated with TKIs for at least 3 years with a confirmed sustained deep molecular response (DMR) for at least 1 year. TKI was re-administered in patients who experienced the loss of major molecular response (MMR). Results A total of 66 patients from five institutions in South Korea were enrolled. During a median follow-up period of 16.5 months, 29/66 (43.9%) patients experienced molecular relapse; the probability of molecular relapse-free survival (RFS) at 6 or 12 months after TKI discontinuation was 65.6% or 57.8%, respectively, with most molecular relapses occurring within the first 7 months. All patients who lost MMR were re-treated with TKI, and all re-achieved MMR at a median of 2.8 months. E14a2 transcript type (p = 0.005) and longer DMR duration (⩾48 months) prior to TKI discontinuation (p = 0.002) were associated with prolonged molecular RFS and with sustained DMR. Patients with both e13a2 transcript type and detectable BCR::ABL1 (⩾MR5.0) by ddPCR at the time of TKI discontinuation showed shorter duration of molecular RFS (p = 0.015). Conclusion Our data suggest that transcript type and BCR::ABL1 transcript levels on ddPCR should be taken into consideration when deciding whether to discontinue TKI therapy.
Collapse
Affiliation(s)
- Hyunkyung Park
- Department of Internal Medicine, Seoul National University–Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
| | - Hyeong-Joon Kim
- Department of Internal Medicine, Chonnam National University, Hwasun Hospital, Hwasun, South Korea
| | - Sang-Kyun Sohn
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | | | | | | | - Jee Hyun Kong
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Hawk Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University, Hwasun Hospital, Hwasun, South Korea
| | - Jinny Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seonyang Park
- Department of Internal Medicine, Inje University, Haeundae Paik Hospital, Busan, South Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| |
Collapse
|
5
|
Cross NCP, Ernst T, Branford S, Cayuela JM, Deininger M, Fabarius A, Kim DDH, Machova Polakova K, Radich JP, Hehlmann R, Hochhaus A, Apperley JF, Soverini S. European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia. Leukemia 2023; 37:2150-2167. [PMID: 37794101 PMCID: PMC10624636 DOI: 10.1038/s41375-023-02048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
From the laboratory perspective, effective management of patients with chronic myeloid leukemia (CML) requires accurate diagnosis, assessment of prognostic markers, sequential assessment of levels of residual disease and investigation of possible reasons for resistance, relapse or progression. Our scientific and clinical knowledge underpinning these requirements continues to evolve, as do laboratory methods and technologies. The European LeukemiaNet convened an expert panel to critically consider the current status of genetic laboratory approaches to help diagnose and manage CML patients. Our recommendations focus on current best practice and highlight the strengths and pitfalls of commonly used laboratory tests.
Collapse
Affiliation(s)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Susan Branford
- Centre for Cancer Biology and SA Pathology, Adelaide, SA, Australia
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint-Louis, AP-HP and EA3518, Université Paris Cité, Paris, France
| | | | - Alice Fabarius
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | | | | | - Rüdiger Hehlmann
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
- ELN Foundation, Weinheim, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jane F Apperley
- Centre for Haematology, Imperial College London, London, UK
- Department of Clinical Haematology, Imperial College Healthcare NHS Trust, London, UK
| | - Simona Soverini
- Department of Medical and Surgical Sciences, Institute of Hematology "Lorenzo e Ariosto Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Iezza M, Cortesi S, Ottaviani E, Mancini M, Venturi C, Monaldi C, De Santis S, Testoni N, Soverini S, Rosti G, Cavo M, Castagnetti F. Prognosis in Chronic Myeloid Leukemia: Baseline Factors, Dynamic Risk Assessment and Novel Insights. Cells 2023; 12:1703. [PMID: 37443737 PMCID: PMC10341256 DOI: 10.3390/cells12131703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The introduction of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of chronic myeloid leukemia (CML), leading to a dramatic improvement of the outcome of CML patients, who now have a nearly normal life expectancy and, in some selected cases, the possibility of aiming for the more ambitious goal of treatment-free remission (TFR). However, the minority of patients who fail treatment and progress from chronic phase (CP) to accelerated phase (AP) and blast phase (BP) still have a relatively poor prognosis. The identification of predictive elements enabling a prompt recognition of patients at higher risk of progression still remains among the priorities in the field of CML management. Currently, the baseline risk is assessed using simple clinical and hematologic parameters, other than evaluating the presence of additional chromosomal abnormalities (ACAs), especially those at "high-risk". Beyond the onset, a re-evaluation of the risk status is mandatory, monitoring the response to TKI treatment. Moreover, novel critical insights are emerging into the role of genomic factors, present at diagnosis or evolving on therapy. This review presents the current knowledge regarding prognostic factors in CML and their potential role for an improved risk classification and a subsequent enhancement of therapeutic decisions and disease management.
Collapse
Affiliation(s)
- Miriam Iezza
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Sofia Cortesi
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Emanuela Ottaviani
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Manuela Mancini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Claudia Venturi
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Cecilia Monaldi
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Sara De Santis
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Nicoletta Testoni
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Simona Soverini
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Gianantonio Rosti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS “Dino Amadori”, 47014 Meldola, Italy;
| | - Michele Cavo
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Fausto Castagnetti
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| |
Collapse
|
7
|
Branford S, Apperley JF. Measurable residual disease in chronic myeloid leukemia. Haematologica 2022; 107:2794-2809. [PMID: 36453517 PMCID: PMC9713565 DOI: 10.3324/haematol.2022.281493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic myeloid leukemia is characterized by a single genetic abnormality resulting in a fusion gene whose mRNA product is easily detected and quantified by reverse-transcriptase polymerase chain reaction analysis. Measuring residual disease was originally introduced to identify patients relapsing after allogeneic stem cell transplantation but rapidly adopted to quantify responses to tyrosine kinase inhibitors. Real-time quantitative polymerase chain reaction is now an essential tool for the management of patients and is used to influence treatment decisions. In this review we track this development including the international collaboration to standardize results, discuss the integration of molecular monitoring with other factors that affect patients' management, and describe emerging technology. Four case histories describe varying scenarios in which the accurate measurement of residual disease identified patients at risk of disease progression and allowed appropriate investigations and timely clinical intervention.
Collapse
Affiliation(s)
- Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia,School of Medicine, University of Adelaide, Adelaide, Australia,Clinical and Health Sciences, University of South Australia, Adelaide, Australia,S. Branford
| | - Jane F. Apperley
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK,Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Salmon M, White HE, Zizkova H, Gottschalk A, Motlova E, Cerveira N, Colomer D, Coriu D, Franke GN, Gottardi E, Izzo B, Jurcek T, Lion T, Schäfer V, Venturi C, Vigneri P, Zawada M, Zuna J, Hovorkova L, Koblihova J, Klamova H, Markova MS, Srbova D, Benesova A, Polivkova V, Zackova D, Mayer J, Roeder I, Glauche I, Ernst T, Hochhaus A, Polakova KM, Cross NCP. Impact of BCR::ABL1 transcript type on RT-qPCR amplification performance and molecular response to therapy. Leukemia 2022; 36:1879-1886. [PMID: 35676453 PMCID: PMC9252903 DOI: 10.1038/s41375-022-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022]
Abstract
Several studies have reported that chronic myeloid leukaemia (CML) patients expressing e14a2 BCR::ABL1 have a faster molecular response to therapy compared to patients expressing e13a2. To explore the reason for this difference we undertook a detailed technical comparison of the commonly used Europe Against Cancer (EAC) BCR::ABL1 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assay in European Treatment and Outcome Study (EUTOS) reference laboratories (n = 10). We found the amplification ratio of the e13a2 amplicon was 38% greater than e14a2 (p = 0.015), and the amplification efficiency was 2% greater (P = 0.17). This subtle difference led to measurable transcript-type dependent variation in estimates of residual disease which could be corrected by (i) taking the qPCR amplification efficiency into account, (ii) using alternative RT-qPCR approaches or (iii) droplet digital PCR (ddPCR), a technique which is relatively insensitive to differences in amplification kinetics. In CML patients, higher levels of BCR::ABL1/GUSB were identified at diagnosis for patients expressing e13a2 (n = 67) compared to e14a2 (n = 78) when analysed by RT-qPCR (P = 0.0005) but not ddPCR (P = 0.5). These data indicate that widely used RT-qPCR assays result in subtly different estimates of disease depending on BCR::ABL1 transcript type; these differences are small but may need to be considered for optimal patient management.
Collapse
Affiliation(s)
- Matthew Salmon
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Helen E White
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Hana Zizkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Andrea Gottschalk
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Eliska Motlova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Nuno Cerveira
- Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Dolors Colomer
- Pathology Department, Hospital Clinic, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - Daniel Coriu
- Fundeni Clinical Institute, Hematology Department, Bucharest, Romania.,Hematology Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Georg N Franke
- University of Leipzig Medical Center, Department for Hematology, Cellular Therapies and Hemostaseology, Leipzig, Germany
| | - Enrico Gottardi
- Laboratory of Chemical and Clinical Analysis "Area 3" A.O.U San Luigi Gonzaga-Orbassano, Turin, Italy
| | - Barbara Izzo
- Department of Molecular Medicine and Medical Biotechnology University 'Federico II' and CEINGE - Advanced Biotechnologies, Naples, Italy
| | - Tomas Jurcek
- Center of Molecular Biology and Gene Therapy, Internal Hematology and Oncology Clinic, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Thomas Lion
- Labdia Labordiagnostik / St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Vivien Schäfer
- Abteilung Hämatologie/Onkologie, Klinik für Innere Medizin II, University of Jena, Jena, Germany
| | - Claudia Venturi
- IRCSS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Paolo Vigneri
- University of Catania, Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, Catania, Italy
| | | | - Jan Zuna
- CLIP, Dept. of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lenka Hovorkova
- CLIP, Dept. of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jitka Koblihova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Klamova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Dana Srbova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Adela Benesova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vaclava Polivkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Daniela Zackova
- Internal Hematology and Oncology Clinic, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Internal Hematology and Oncology Clinic, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany. Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Thomas Ernst
- Abteilung Hämatologie/Onkologie, Klinik für Innere Medizin II, University of Jena, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie/Onkologie, Klinik für Innere Medizin II, University of Jena, Jena, Germany
| | | | - Nicholas C P Cross
- Faculty of Medicine, University of Southampton, Southampton, UK. .,Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK.
| |
Collapse
|
9
|
Branford S. Commentary on Dominy et al., assessment of quantitative PCR for BCR::ABL1 Transcripts in CML: Are improved outcomes in patients with e14a2 transcripts an artefact of technology? Br J Haematol 2022; 197:9-10. [PMID: 35112716 PMCID: PMC9303732 DOI: 10.1111/bjh.18046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| |
Collapse
|