1
|
Iacobescu M, Pop C, Uifălean A, Mogoşan C, Cenariu D, Zdrenghea M, Tănase A, Bergthorsson JT, Greiff V, Cenariu M, Iuga CA, Tomuleasa C, Tătaru D. Unlocking protein-based biomarker potential for graft-versus-host disease following allogenic hematopoietic stem cell transplants. Front Immunol 2024; 15:1327035. [PMID: 38433830 PMCID: PMC10904603 DOI: 10.3389/fimmu.2024.1327035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Despite the numerous advantages of allogeneic hematopoietic stem cell transplants (allo-HSCT), there exists a notable association with risks, particularly during the preconditioning period and predominantly post-intervention, exemplified by the occurrence of graft-versus-host disease (GVHD). Risk stratification prior to symptom manifestation, along with precise diagnosis and prognosis, relies heavily on clinical features. A critical imperative is the development of tools capable of early identification and effective management of patients undergoing allo-HSCT. A promising avenue in this pursuit is the utilization of proteomics-based biomarkers obtained from non-invasive biospecimens. This review comprehensively outlines the application of proteomics and proteomics-based biomarkers in GVHD patients. It delves into both single protein markers and protein panels, offering insights into their relevance in acute and chronic GVHD. Furthermore, the review provides a detailed examination of the site-specific involvement of GVHD. In summary, this article explores the potential of proteomics as a tool for timely and accurate intervention in the context of GVHD following allo-HSCT.
Collapse
Affiliation(s)
- Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogoşan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Translational Medicine, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Tănase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University Iceland, Reykjavik, Iceland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Translational Medicine, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Tătaru
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Carneiro TX, Marrese DG, Dos Santos MG, Gonçalves MV, Novis YAS, Rizzatti EG, Rocha V, Sandes AF, de Lacerda MP, Arrais-Rodrigues C. Circulating extracellular vesicles as a predictive biomarker for acute graft-versus-host disease. Exp Hematol 2023; 117:15-23. [PMID: 36400315 DOI: 10.1016/j.exphem.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
The diagnosis and management of graft-versus-host disease (GVHD) have remained important challenges in allogeneic stem cell transplantation (allo-SCT). Novel diagnostic methods and therapeutic interventions are needed to further improve on patient outcomes. Extracellular vesicles (EV) are microvesicles formed by the inversion of the phospholipid bilayer of different cellular subtypes and have been described as biomarkers of cellular damage, activation, and intercellular signaling in numerous clinical scenarios. We studied the association between the levels of EV and the incidence of acute GVHD (aGVHD). Forty patients undergoing allo-SCT for hematological malignancies had their plasma collected at neutrophil engraftment. Using flow cytometry combined with fluorescent beads, the total circulating EV count (TEV) was established with annexin V positivity; CD61 positivity was used for platelet-derived EV (PEV), and CD235 positivity, for erythrocyte-derived EV (EryEV). TEV counts greater than 516/μL were associated with a higher cumulative incidence (CI) of grade II to IV aGVHD (54% vs. 21%; p = 0.02), as were EryEV counts above 357 /μL (CI of aGVHD: 59% vs. 26%; p = 0.04). In patients who are exposed to reduced intensity conditioning (RIC), stronger associations of both high TEV and EryEV counts with aGVHD were observed (77% vs. 22%; p = 0.003 and 89% vs. 27%; p = 0.002, respectively). PEV levels were not associated with the risk of aGVHD. Our data suggest that the measurement of cell-derived EV at engraftment can be used as a preemptive biomarker for acute GVHD.
Collapse
Affiliation(s)
- Thiago Xavier Carneiro
- Centro de Oncologia, Hospital Sirio Libanes, São Paulo, São Paulo, Brazil; Disciplina de Hematologia, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil.
| | - Daniella Gregolin Marrese
- Disciplina de Hematologia, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil
| | - Melina Gonçalves Dos Santos
- Disciplina de Hematologia, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil
| | - Matheus Vescovi Gonçalves
- Disciplina de Hematologia, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil
| | | | | | - Vanderson Rocha
- Centro de Oncologia, Hospital Sirio Libanes, São Paulo, São Paulo, Brazil
| | | | | | - Celso Arrais-Rodrigues
- Centro de Oncologia, Hospital Sirio Libanes, São Paulo, São Paulo, Brazil; Disciplina de Hematologia, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
3
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|