1
|
Huang Y, Qiu A, Meng Y, Lin M, Xu Y, Yang L. RSK2-mediated phosphorylation and degradation of UBE2O inhibits hepatocellular carcinoma growth and resistance to radiotherapy. Cancer Lett 2025; 615:217558. [PMID: 39954933 DOI: 10.1016/j.canlet.2025.217558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Radioresistance poses the main challenge in radiation therapy (RT) for liver cancer, with the DNA Damage response (DDR) being a crucial component of this resistance. Ubiquitin-conjugating enzyme E2O (UBE2O) has been implicated in regulating tumor proliferation, cholesterol metabolism, and drug resistance. However, the role of the ubiquitin-conjugating enzyme E2O (UBE2O) in DDR of liver cancer remains to be fully explored. We discovered an elevated expression of UBE2O within liver cancer tissues, which was notably associated with unfavorable prognoses in hepatocellular carcinoma (HCC) patients. Furthermore, we found that the suppression of UBE2O can effectively reduce the growth and resistance to radiotherapy of HCC cells in vitro and in vivo. Moreover, p90 ribosomal S6 kinase2 (RSK2) was confirmed as a novel interacting kinase of UBE2O, which mediated the phosphorylation and degradation of UBE2O at the Thr838 site. RSK2 inhibition promotes tumor proliferation and resistance to radiotherapy of HCC cells in vitro and in vivo, and these effects are abrogated upon UBE2O knockdown. Collectively, our work revealed that UBE2O promotes tumor progression and resistance to radiotherapy, which was negatively regulated by RSK2 for phosphorylation and degradation, indicating that the RSK2/UBE2O axis provides a potential radiosensitization target for HCC patients.
Collapse
Affiliation(s)
- Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Zhejiang Province Key Disciplines in Traditional Chinese Medicine-Integrated Traditional Chinese and Western Medicine Clinical Oncology, Hangzhou, Zhejiang, 310014, China.
| | - Anchen Qiu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ming Lin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yunhong Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Zhejiang Province Key Disciplines in Traditional Chinese Medicine-Integrated Traditional Chinese and Western Medicine Clinical Oncology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
2
|
Song Y, Hu L, Cheng J, Li Z, Zheng J. LncRNA SNHG5 induces CAFs-like phenotype and autophagy of AML-MSCs via PTBP1/ATG5 axis to confer chemoresistance of AML cells. Cell Signal 2025; 128:111625. [PMID: 39864537 DOI: 10.1016/j.cellsig.2025.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is still a threaten to human health due to its high occurrence and poor prognosis. Mesenchymal stem cells (MSCs) in bone marrow microenvironment (BMM) play a critical role in the development of AML. This study elucidated the interaction between MSCs and AML cells and its underlying mechanism. METHOD MSCs were isolated, identified, and co-cultured with AML cells. qRT-PCR, Western blotting and immunofluorescence were used to determine molecule expression. Cell viability and apoptosis were determined by CCK-8 and flow cytometry. Exosomes were isolated and characterized, and PKH26 was used for monitoring exosome internalization. RNA-FISH was used to determine the localization of SNHG5. RIP, RNA-pull down and ChIP assays were used to evaluate the molecular interaction. RESULTS SNHG5 expression was up-regulated and positively correlated with cancer-associated fibroblasts (CAFs)-related biomarkers in AML-MSCs. AML cells-derived exosomes delivered SNHG5 to enhance its expression in MSCs. SNHG5 overexpression induced CAFs-like phenotype and autophagy in HD-MSCs that led to daunorubicin resistance of AML cells. Mechanistically, SNHG5 stabilized autophagy related 5 (ATG5) mRNA by interaction with polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSION AML cells-derived exosomal lncRNA SNHG5 triggered CAFs-like phenotype and autophagy of AML-MSCs via interaction with PTBP1 to increase ATG5 mRNA stability, thereby leading to chemoresistance of AML cells.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Drug Resistance, Neoplasm/genetics
- Autophagy
- Mesenchymal Stem Cells/metabolism
- Polypyrimidine Tract-Binding Protein/metabolism
- Polypyrimidine Tract-Binding Protein/genetics
- Autophagy-Related Protein 5/metabolism
- Autophagy-Related Protein 5/genetics
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Exosomes/metabolism
- Cell Line, Tumor
- Phenotype
- Male
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Yuan Song
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Lili Hu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Jing Cheng
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases, Nanchang 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
3
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
4
|
Kou R, Li T, Fu C, Jiang D, Wang Y, Meng J, Zhong R, Liang C, Dong M. Exosome-shuttled FTO from BM-MSCs contributes to cancer malignancy and chemoresistance in acute myeloid leukemia by inducing m6A-demethylation: A nano-based investigation. ENVIRONMENTAL RESEARCH 2024; 244:117783. [PMID: 38048862 DOI: 10.1016/j.envres.2023.117783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Although bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes have been reported to be closely associated with acute myeloid leukemia (AML) progression and chemo-resistance, but its detailed functions and molecular mechanisms have not been fully delineated. Besides, serum RNA m6A demethylase fat mass and obesity-associated protein (FTO)-containing exosomes are deemed as important indicators for cancer progression, and this study aimed to investigate the role of BM-MSCs-derived FTO-exosomes in regulating the malignant phenotypes of AML cells. Here, we verified that BM-MSCs-derived exosomes delivered FTO to promote cancer aggressiveness, stem cell properties and Cytosine arabinoside (Ara-C)-chemoresistance in AML cells, and the underlying mechanisms were also uncovered. Our data suggested that BM-MSCs-derived FTO-exo demethylated m6A modifications in the m6A-modified LncRNA GLCC1 to facilitate its combination with the RNA-binding protein Hu antigen R (HuR), which further increased the stability and expression levels of LncRNA GLCC1. In addition, LncRNA GLCC1 was verified as an oncogene to facilitate cell proliferation and enhanced Ara-C-chemoresistance in AML cells. Further experiments confirmed that demethylated LncRNA GLCC1 served as scaffold to facilitate the formation of the IGF2 mRNA binding protein 1 (IGF2BP1)-c-Myc complex, which led to the activation of the downstream tumor-promoting c-Myc-associated signal pathways. Moreover, our rescuing experiments validated that the promoting effects of BM-MSCs-derived FTO-exo on cancer aggressiveness and drug resistance in AML cells were abrogated by silencing LncRNA GLCC1 and c-Myc. Thus, the present firstly investigated the functions and underlying mechanisms by which BM-MSCs-derived FTO-exo enhanced cancer aggressiveness and chemo-resistance in AML by modulating the LncRNA GLCC1-IGF2BP1-c-Myc signal pathway, and our work provided novel biomarkers for the diagnosis, treatment and therapy of AML in clinic.
Collapse
Affiliation(s)
- Ruirui Kou
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Caizhu Fu
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Duanfeng Jiang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, USA.
| | - Jie Meng
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Ruilan Zhong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Changjiu Liang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical College, Yehai Road No. 368, Longhua District, Haikou, 570000, Hainan Province, China.
| |
Collapse
|