1
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Song Y, Wang L, Zheng Y, Jia L, Li C, Chao K, Li L, Sun S, Wei Y, Ge Y, Yang Y, Zhu L, Zhang Y, Zhao J. Deubiquitinating enzyme USP28 inhibitor AZ1 alone and in combination with cisplatin for the treatment of non-small cell lung cancer. Apoptosis 2024; 29:1793-1809. [PMID: 39222275 PMCID: PMC11416398 DOI: 10.1007/s10495-024-02008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common malignant tumors. Despite decades of research, the treatment of lung cancer remains challenging. Non-small cell lung cancer (NSCLC) is the primary type of lung cancer and is a significant focus of research in lung cancer treatment. The deubiquitinase ubiquitin-specific protease 28 (USP28) plays a role in the progression of various tumors and serves as a potential therapeutic target. This study aims to determine the role of USP28 in the progression of NSCLC. We examined the impact of the USP28 inhibitor AZ1 on the cell cycle, apoptosis, DNA damage response, and cellular immunogenicity in non-small cell lung cancer. We observed that AZ1 and siUSP28 induce DNA damage, leading to the activation of Noxa-mediated mitochondrial apoptosis. The dsDNA and mtDNA released from DNA damage and mitochondrial apoptosis activate tumor cell immunogenicity through the cGAS-STING signaling pathway. Simultaneously, targeting USP28 promotes the degradation of c-MYC, resulting in cell cycle arrest and inhibition of DNA repair. This further promotes DNA damage-induced cell apoptosis mediated by the Noxa protein, thereby enhancing tumor cell immunogenicity mediated by dsDNA and mtDNA. Moreover, we found that the combination of AZ1 and cisplatin (DDP) can enhance therapeutic efficacy, thereby providing a new strategy to overcome cisplatin resistance in NSCLC. These findings suggest that targeting USP28 and combining it with cisplatin are feasible strategies for treating NSCLC.
Collapse
Affiliation(s)
- Yiqiong Song
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Longhao Wang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Oncology, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuanyuan Zheng
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lanqi Jia
- Department of Pharmacy, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 477150, Henan, China
| | - Chunwei Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ke Chao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shilong Sun
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yujie Wei
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yahao Ge
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaqi Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lili Zhu
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yixing Zhang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Chen Q, Le X, Li Q, Liu S, Chen Z. Exploration of inhibitors targeting KIF18A with ploidy-specific lethality. Drug Discov Today 2024; 29:104142. [PMID: 39168405 DOI: 10.1016/j.drudis.2024.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Currently, various antimitotic inhibitors applied in tumor therapy. However, these inhibitors exhibit targeted toxicity to some extent. As a motor protein, kinesin family member 18A (KIF18A) is crucial to spindle formation and is associated with tumors exhibiting ploidy-specific characteristics such as chromosomal aneuploidy, whole-genome doubling (WGD), and chromosomal instability (CIN). Differing from traditional antimitotic targets, KIF18A exhibits tumor-specific selectivity. The functional loss or attenuation of KIF18A results in vulnerability of tumor cells with ploidy-specific characteristics, with lesser effects on diploid cells. Research on inhibitors targeting KIF18A with ploidy-specific lethality holds significant importance. This review provides a brief overview of the regulatory mechanisms of the ploidy-specific lethality target KIF18A and the research advancements in its inhibitors, aiming to facilitate the development of KIF18A inhibitors.
Collapse
Affiliation(s)
- Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Suyou Liu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
4
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
5
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Lycorine (Lycoris radiata)-a unique natural medicine on breast cancer. J Cell Mol Med 2024; 28:e70032. [PMID: 39175104 PMCID: PMC11341274 DOI: 10.1111/jcmm.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer among women worldwide. Lycorine (Lycoris radiata), a small molecule derived from the traditional Chinese herb Amaryllidaceae plants, has appeared potential effect on inhibiting the growth of cancer cells and inducing apoptosis in various types of cancer with minor side effects. To discuss the therapeutic effects and molecular mechanisms of lycorine on BC established by lycorine-treated S180 tumour-bearing mice in vivo. Furthermore, both the mitotic and microtubule assembly dynamics genes were performed by qPCR assays, and the protein expression associated with mitotic arrest was investigated by western blot. Lycorine was demonstrated to reduce sarcoma growth of S180 tumour-bearing mice and inhibit the proliferation of MCF-7 cells in concentration-dependent manner. Moreover, lycorine induced M phase cell cycle arrest via interfering with the mitotic apparatus regulated the expression of 20 genes and 15 proteins in cell cycle progression. Furthermore, this study confirmed that the potential effect of lycorine on BC might be mediated by cell cycle arrest in M phase for the first time. These results would be the consequence of exploitation of lycorine as a potential drug for BC therapy, however further preclinical and clinical studies are still needed.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Bing Wang
- School of Food EngineeringHarbin University of CommerceHarbinChina
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Yan Zhao
- Department of Medical ImagingThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| |
Collapse
|
6
|
Li MY, Chong LC, Duns G, Lytle A, Woolcock B, Jiang A, Telenius A, Ben-Neriah S, Nawaz W, Slack GW, Elisia I, Viganò E, Aoki T, Healy S, Krystal G, Venturutti L, Scott DW, Steidl C. TRAF3 loss-of-function reveals the noncanonical NF-κB pathway as a therapeutic target in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2024; 121:e2320421121. [PMID: 38662551 PMCID: PMC11067025 DOI: 10.1073/pnas.2320421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.
Collapse
Affiliation(s)
- Michael Y. Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Andrew Lytle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Waqas Nawaz
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Ingrid Elisia
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Elena Viganò
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Shannon Healy
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Leandro Venturutti
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| |
Collapse
|
7
|
Gan LH, Yao L, Yan JH, Huang YQ, Zheng L, Liu P, Lei L. Differential Expression of KIF18B in Gastric Cancer and Its Role in Chemotherapy Sensitivity. Crit Rev Eukaryot Gene Expr 2024; 34:37-48. [PMID: 38305287 DOI: 10.1615/critreveukaryotgeneexpr.2023049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Gastric cancer (GC) is a main cause of cancer death in the world, and improving the chemotherapy sensitivity can enhance the chemotherapy efficacy of GC. The study objective is to explore the differential KIF18B expression in GC and its effect on GC chemotherapy sensitivity. The KIF18B expression in GC tissues and adjacent normal tissues was analyzed by real-time quantitative polymerase chain reaction. The relationship between differential KIF18B expression and different clinicopathological features was detected. It was found that KIF18B was highly expressed in GC tissues, and KIF18B expression was differential in patients with different clinicopathological features. The upregulation of KIF18B has a positive correlation with the poor therapeutic effect and high KIF18 was associated with lower 3-year overall survival and disease-free survival. The KIF18B-downregulated NCI-N87 cells were constructed and tested by cell counting kit-8 assay and colony formation. Cell migration and invasion were detected by Transwell assay. The xenograft tumor model was established to observe the effect of KIF18B on the efficacy of chemotherapy. The upregulation of KIF18B reduced the chemotherapy sensitivity of GC cells and enhanced their proliferation, migration, and invasion. Silencing KIF18B inhibited tumor growth and promoted chemotherapy efficacy in vivo. In summary, KIF18B inhibitor may have a potential function for improving the efficacy of chemotherapy in GC.
Collapse
Affiliation(s)
- Li-Hong Gan
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ling Yao
- The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University)
| | - Jin-Hua Yan
- Department of Hematology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ya-Qin Huang
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Peng Liu
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ling Lei
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| |
Collapse
|