1
|
Lian Y, Zhang Q, Yang X, Fang H, Wang H. Rigid facial motion at study facilitates the holistic processing of own-race faces during the structural encoding stage. Int J Psychophysiol 2024; 203:112407. [PMID: 39084291 DOI: 10.1016/j.ijpsycho.2024.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Holistic processing is a fundamental element of face-recognition studies. Some behavioral studies have investigated the impact of rigid facial motion on holistic face processing, yet it is still unclear how rigid motion affects the time course of holistic face processing for different face races. The current study investigated this issue, using the composite face effect (CFE) as a direct measure of holistic processing. Participants were asked to match the identity of the top half of a static composite face with the study face during the test stage, where the study face was either static or rigidly-moving. ERP results showed that rigidly-moving study faces elicited a larger CFE relative to static study faces in the N170 component when recognizing own-race faces. The amplitude of P1, N170 and P2 components indicated that rigid motion facilitated holistic face processing, with differences observed between the hemispheres over time. Specifically, the CFE was only observed after exposure to rigidly-moving faces in the P1 and P2 components of the right hemisphere. Additionally, a greater CFE was observed following exposure to rigidly-moving faces compared to static faces, particularly in the N170 component of the left hemisphere. This study suggests that holistic processing is a fundamental aspect of face perception that applies to both static and moving faces, not just static ones. Furthermore, rigid facial motion improves holistic processing of own-race faces during the structural encoding stage. These findings provide evidence of distinct neural mechanisms underlying the holistic processing of static and moving faces.
Collapse
Affiliation(s)
- Yujing Lian
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Qi Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xuexian Yang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Haiqing Fang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Hailing Wang
- School of Psychology, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
2
|
Bossi F, Ricciardelli P, Rivolta D. Stimulus Inversion and Emotional Expressions Independently Affect Face and Body Perception: An ERP Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2914-2927. [PMID: 39102324 DOI: 10.1109/tnsre.2024.3439129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Faces and bodies provide critical cues for social interaction and communication. Their structural encoding depends on configural processing, as suggested by the detrimental effect of stimulus inversion for both faces (i.e., face inversion effect - FIE) and bodies (body inversion effect - BIE). An occipito-temporal negative event-related potential (ERP) component peaking around 170 ms after stimulus onset (N170) is consistently elicited by human faces and bodies and is affected by the inversion of these stimuli. Albeit it is known that emotional expressions can boost structural encoding (resulting in larger N170 components for emotional than for neutral faces), little is known about body emotional expressions. Thus, the current study investigated the effects of different emotional expressions on structural encoding in combination with FIE and BIE. Three ERP components (P1, N170, P2) were recorded using a 128-channel electroencephalogram (EEG) when participants were presented with (upright and inverted) faces and bodies conveying four possible emotions (happiness, sadness, anger, fear) or no emotion (neutral). Results demonstrated that inversion and emotional expressions independently affected the Accuracy and amplitude of all ERP components (P1, N170, P2). In particular, faces showed specific effects of emotional expressions during the structural encoding stage (N170), while P2 amplitude (representing top-down conceptualisation) was modified by emotional body perception. Moreover, the task performed by participants (i.e., implicit vs. explicit processing of emotional information) differently influenced Accuracy and ERP components. These results support integrated theories of visual perception, thus speaking in favour of the functional independence of the two neurocognitive pathways (one for structural encoding and one for emotional expression analysis) involved in social stimuli processing. Results are discussed highlighting the neurocognitive and computational advantages of the independence between the two pathways.
Collapse
|
3
|
Corti C, Butti N, Bardoni A, Strazzer S, Urgesi C. Body Processing in Children and Adolescents with Traumatic Brain Injury: An Exploratory Study. Brain Sci 2022; 12:brainsci12080962. [PMID: 35892403 PMCID: PMC9331706 DOI: 10.3390/brainsci12080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Dysfunctions in body processing have been documented in adults with brain damage, while limited information is available for children. This study aimed to investigate body processing in children and adolescents with traumatic brain injury (TBI) (N = 33), compared to peers with typical development. Two well-known computerized body-representation paradigms, namely Visual Body Recognition and Visuo-spatial Imagery, were administered. Through the first paradigm, the body inversion and composite illusion effects were tested with a matching to sample task as measures of configural and holistic processing of others’ bodies, respectively. The second paradigm investigated with a laterality judgement task the ability to perform first-person and object-based mental spatial transformations of own body and external objects, respectively. Body stimuli did not convey any emotional contents or symbolic meanings. Patients with TBI had difficulties with mental transformations of both body and object stimuli, displaying deficits in motor and visual imagery abilities, not limited to body processing. Therefore, cognitive rehabilitation of body processing in TBI might benefit from the inclusion of both general training on visuo-spatial abilities and specific exercises aimed at boosting visual body perception and motor imagery.
Collapse
Affiliation(s)
- Claudia Corti
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy; (N.B.); (A.B.); (S.S.)
- Correspondence:
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy; (N.B.); (A.B.); (S.S.)
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandra Bardoni
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy; (N.B.); (A.B.); (S.S.)
| | - Sandra Strazzer
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy; (N.B.); (A.B.); (S.S.)
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, 33078 San Vito al Tagliamento, Italy;
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Angelini M, Del Vecchio M, Lopomo NF, Gobbo M, Avanzini P. Perspective-dependent activation of frontoparietal circuits during the observation of a static body effector. Brain Res 2021; 1769:147604. [PMID: 34332965 DOI: 10.1016/j.brainres.2021.147604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/16/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
The perspective from which body-related stimuli are observed plays a fundamental role in modulating cerebral activity during the processing of others' bodies and actions. Previous research has shown perspective-dependent cerebral responses during the observation of both ongoing actions and static images of an acting body with implied motion information, with an advantage for the egocentric viewpoint. The present high-density EEG study assessed event-related potentials triggered by the presentation of a forearm at rest before reach-to-grasp actions, shown from four different viewpoints. Through a spatiotemporal analysis of the scalp electric field and the localization of cortical generators, our study revealed overall different processing for the third-person perspective relative to other viewpoints, mainly due to a later activation of motor-premotor regions. Since observing a static body effector often precedes action observation, our results integrate previous evidence of perspective-dependent encoding, with cascade implications on the design of neurorehabilitative or motor learning interventions based on action observation.
Collapse
Affiliation(s)
- Monica Angelini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Parma, Italy; Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, Italy.
| | - Maria Del Vecchio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Parma, Italy
| | - Nicola Francesco Lopomo
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, Italy
| | - Massimiliano Gobbo
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Parma, Italy.
| |
Collapse
|
5
|
Premature birth affects visual body representation and body schema in preterm children. Brain Cogn 2020; 145:105612. [PMID: 32890903 DOI: 10.1016/j.bandc.2020.105612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023]
Abstract
Research has demonstrated that from the first six months of life infants show early sensitivity to body visual features and rely on sensorimotor and proprioceptive inputs in forming representations of their own bodies. Premature birth interferes with typical exposition to visual, sensorimotor and proprioceptive stimulation, thus presumably affecting the development of body representations. Here, we tested this hypothesis by comparing the performance of preterm children with that of age-matched full-termchildren in two tasks assessing, respectively, visual body processing and body schema. We found that preterm children had spared configural processing but altered holistic processing of others' bodies and showed a general difficulty in expressing visuospatial judgements on body stimuli. Furthermore, body-centered visuospatial abilities were associated with specific impairments in operating object-based visuospatial transformations. The findings of this study indicate that preterm birth might interfere with the development of body representations at the levels of body visual perceptual processing and of body schema, with effects even on visuo-spatial abilities for non-bodily stimuli. Body-centered rehabilitative interventions should be proposed to preterm children in order to enhance visuo-spatial abilities and higher-level cognitive functions.
Collapse
|
6
|
Bossi F, Premoli I, Pizzamiglio S, Balaban S, Ricciardelli P, Rivolta D. Theta- and Gamma-Band Activity Discriminates Face, Body and Object Perception. Front Hum Neurosci 2020; 14:74. [PMID: 32226369 PMCID: PMC7080986 DOI: 10.3389/fnhum.2020.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Face and body perception is mediated by configural mechanisms, which allow the perception of these stimuli as a whole, rather than the sum of individual parts. Indirect measures of configural processing in visual cognition are the face and body inversion effects (FIE and BIE), which refer to the drop in performance when these stimuli are perceived upside-down. Albeit FIE and BIE have been well characterized at the behavioral level, much still needs to be understood in terms of the neurophysiological correlates of these effects. Thus, in the current study, the brain’s electrical activity has been recorded by a 128 channel electroencephalogram (EEG) in 24 healthy participants while perceiving (upright and inverted) faces, bodies and houses. EEG data were analyzed in both the time domain (i.e., event-related potentials—ERPs) and the frequency domain [i.e., induced theta (5–7 Hz) and gamma (28–45 Hz) oscillations]. ERPs amplitude results showed increased N170 amplitude for inverted faces and bodies (compared to the same stimuli presented in canonical position) but not for houses. ERPs latency results showed delayed N170 components for inverted (vs. upright) faces, houses, but not bodies. Spectral analysis of induced oscillations indicated physiological FIE and BIE; that is decreased gamma-band synchronization over right occipito-temporal electrodes for inverted (vs. upright) faces, and increased bilateral frontoparietal theta-band synchronization for inverted (vs. upright) faces. Furthermore, increased left occipito-temporal and right frontal theta-band synchronization for upright (vs. inverted) bodies was found. Our findings, thus, demonstrate clear differences in the neurophysiological correlates of face and body perception. The neurophysiological FIE suggests disruption of feature binding processes (decrease in occipital gamma oscillations for inverted faces), together with enhanced feature-based attention (increase in frontoparietal theta oscillations for inverted faces). In contrast, the BIE may suggest that structural encoding for bodies is mediated by the first stages of configural processing (decrease in occipital theta oscillations for inverted bodies).
Collapse
Affiliation(s)
- Francesco Bossi
- Department of Psychology, University of Milan-Bicocca, Milan, Italy.,School of Psychology, University of East London (UEL), London, United Kingdom
| | - Isabella Premoli
- Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Sara Pizzamiglio
- School of Architecture, Computing and Engineering, University of East London (UEL), London, United Kingdom
| | - Sema Balaban
- School of Psychology, University of East London (UEL), London, United Kingdom
| | - Paola Ricciardelli
- Department of Psychology, University of Milan-Bicocca, Milan, Italy.,NeuroMI: Milan Center for Neuroscience, Milan, Italy
| | - Davide Rivolta
- School of Psychology, University of East London (UEL), London, United Kingdom.,Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Early Brain Damage Affects Body Schema and Person Perception Abilities in Children and Adolescents with Spastic Diplegia. Neural Plast 2019; 2019:1678984. [PMID: 31531012 PMCID: PMC6721097 DOI: 10.1155/2019/1678984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022] Open
Abstract
Early brain damage leading to cerebral palsy is associated to core motor impairments and also affects cognitive and social abilities. In particular, previous studies have documented specific alterations of perceptual body processing and motor cognition that are associated to unilateral motor deficits in hemiplegic patients. However, little is known about spastic diplegia (SpD), which is characterized by motorial deficits involving both sides of the body and is often associated to visuospatial, attentional, and social perception impairments. Here, we compared the performance of a sample of 30 children and adolescents with SpD (aged 7-18 years) and of a group of age-matched controls with typical development (TD) at two different tasks tapping on body representations. In the first task, we tested visual and motor imagery abilities as assessed, respectively, by the object-based mental rotation of letters and by the first-person transformations for whole-body stimuli. In the second task, we administered an inversion effect/composite illusion task to evaluate the use of configural/holistic processing of others' body. Additionally, we assessed social perception abilities in the SpD sample using the NEPSY-II battery. In line with previously reported visuospatial deficits, a general mental imagery impairment was found in SpD patients when they were engaged in both object-centered and first-person mental transformations. Nevertheless, a specific deficit in operating an own-body transformation emerged. As concerns body perception, while more basic configural processing (i.e., inversion effect) was spared, no evidence for holistic (i.e., composite illusion) body processing was found in the SpD group. NEPSY-II assessment revealed that SpD children were impaired in both the theory of mind and affect recognition subtests. Overall, these findings suggested that early brain lesions and biased embodied experience could affect higher-level motor cognition and perceptual body processing, thus pointing to a strict link between motor deficits, body schema alterations, and person processing difficulties.
Collapse
|
8
|
Xu B, Kankanhalli MS, Zhao Q. Ultra-rapid object categorization in real-world scenes with top-down manipulations. PLoS One 2019; 14:e0214444. [PMID: 30969988 PMCID: PMC6457495 DOI: 10.1371/journal.pone.0214444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/13/2019] [Indexed: 11/18/2022] Open
Abstract
Humans are able to achieve visual object recognition rapidly and effortlessly. Object categorization is commonly believed to be achieved by interaction between bottom-up and top-down cognitive processing. In the ultra-rapid categorization scenario where the stimuli appear briefly and response time is limited, it is assumed that a first sweep of feedforward information is sufficient to discriminate whether or not an object is present in a scene. However, whether and how feedback/top-down processing is involved in such a brief duration remains an open question. To this end, here, we would like to examine how different top-down manipulations, such as category level, category type and real-world size, interact in ultra-rapid categorization. We have constructed a dataset comprising real-world scene images with a built-in measurement of target object display size. Based on this set of images, we have measured ultra-rapid object categorization performance by human subjects. Standard feedforward computational models representing scene features and a state-of-the-art object detection model were employed for auxiliary investigation. The results showed the influences from 1) animacy (animal, vehicle, food), 2) level of abstraction (people, sport), and 3) real-world size (four target size levels) on ultra-rapid categorization processes. This had an impact to support the involvement of top-down processing when rapidly categorizing certain objects, such as sport at a fine grained level. Our work on human vs. model comparisons also shed light on possible collaboration and integration of the two that may be of interest to both experimental and computational vision researches. All the collected images and behavioral data as well as code and models are publicly available at https://osf.io/mqwjz/.
Collapse
Affiliation(s)
- Bingjie Xu
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Qi Zhao
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
9
|
Early visual ERPs show stable body-sensitive patterns over a 4-week test period. PLoS One 2018; 13:e0192583. [PMID: 29438399 PMCID: PMC5810991 DOI: 10.1371/journal.pone.0192583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2018] [Indexed: 11/19/2022] Open
Abstract
Event-related potential (ERP) studies feature among the most cited papers in the field of body representation, with recent research highlighting the potential of ERPs as neuropsychiatric biomarkers. Despite this, investigation into how reliable early visual ERPs and body-sensitive effects are over time has been overlooked. This study therefore aimed to assess the stability of early body-sensitive effects and visual P1, N1 and VPP responses. Participants were asked to identify pictures of their own bodies, other bodies and houses during an EEG test session that was completed at the same time, once a week, for four consecutive weeks. Results showed that amplitude and latency of early visual components and their associated body-sensitive effects were stable over the 4-week period. Furthermore, correlational analyses revealed that VPP component amplitude might be more reliable than VPP latency and specific electrode sites might be more robust indicators of body-sensitive cortical activity than others. These findings suggest that visual P1, N1 and VPP responses, alongside body-sensitive N1/VPP effects, are robust indications of neuronal activity. We conclude that these components are eligible to be considered as electrophysiological biomarkers relevant to body representation.
Collapse
|
10
|
Arizpe JM, McKean DL, Tsao JW, Chan AWY. Where You Look Matters for Body Perception: Preferred Gaze Location Contributes to the Body Inversion Effect. PLoS One 2017; 12:e0169148. [PMID: 28085894 PMCID: PMC5234795 DOI: 10.1371/journal.pone.0169148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
The Body Inversion Effect (BIE; reduced visual discrimination performance for inverted compared to upright bodies) suggests that bodies are visually processed configurally; however, the specific importance of head posture information in the BIE has been indicated in reports of BIE reduction for whole bodies with fixed head position and for headless bodies. Through measurement of gaze patterns and investigation of the causal relation of fixation location to visual body discrimination performance, the present study reveals joint contributions of feature and configuration processing to visual body discrimination. Participants predominantly gazed at the (body-centric) upper body for upright bodies and the lower body for inverted bodies in the context of an experimental paradigm directly comparable to that of prior studies of the BIE. Subsequent manipulation of fixation location indicates that these preferential gaze locations causally contributed to the BIE for whole bodies largely due to the informative nature of gazing at or near the head. Also, a BIE was detected for both whole and headless bodies even when fixation location on the body was held constant, indicating a role of configural processing in body discrimination, though inclusion of the head posture information was still highly discriminative in the context of such processing. Interestingly, the impact of configuration (upright and inverted) to the BIE appears greater than that of differential preferred gaze locations.
Collapse
Affiliation(s)
- Joseph M. Arizpe
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Boston Attention and Learning Laboratory, Boston Division Veterans Affairs Healthcare System, Jamaica Plain, Massachusetts, United States of America
- * E-mail:
| | - Danielle L. McKean
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
| | - Jack W. Tsao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Memphis Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
| | - Annie W.-Y. Chan
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
11
|
Vakli P, Németh K, Zimmer M, Kovács G. The electrophysiological correlates of integrated face and body-part perception. Q J Exp Psychol (Hove) 2017; 70:142-153. [PMID: 26651838 DOI: 10.1080/17470218.2015.1127981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies have suggested that the human visual system processes faces and bodies holistically-that is, the different body parts are integrated into a unified representation. However, the time course of this integrative process is less known. In the present study, we investigated this issue by recording event-related potentials evoked by a face and two hands presented simultaneously and in different configurations. When the hands were rotated to obtain a biologically implausible configuration, a reduction of the P2 amplitude was observed relative to the condition in which the face and hands were retained in their veridical configuration and were supplemented with visual cues to highlight further the overall body posture. Our results show that the P2 component is sensitive to manipulations affecting the configuration of face and hand stimuli and suggest that the P2 reflects the operation of perceptual mechanisms responsible for the integrated processing of visually presented body parts.
Collapse
Affiliation(s)
- Pál Vakli
- a Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kornél Németh
- a Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Márta Zimmer
- a Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyula Kovács
- a Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary.,b Institute of Psychology, Friedrich-Schiller-University of Jena, Jena, Germany.,c DFG Research Unit Person Perception, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
12
|
|