1
|
Bian Q, Li B, Zhang L, Sun Y, Zhao Z, Ding Y, Yu H. Molecular pathogenesis, mechanism and therapy of Cav1 in prostate cancer. Discov Oncol 2023; 14:196. [PMID: 37910338 PMCID: PMC10620365 DOI: 10.1007/s12672-023-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Prostate cancer is the second incidence of malignant tumors in men worldwide. Its incidence and mortality are increasing year by year. Enhanced expression of Cav1 in prostate cancer has been linked to both proliferation and metastasis of cancer cells, influencing disease progression. Dysregulation of the Cav1 gene shows a notable association with prostate cancer. Nevertheless, there is no systematic review to report about molecular signal mechanism of Cav1 and drug treatment in prostate cancer. This article reviews the structure, physiological and pathological functions of Cav1, the pathogenic signaling pathways involved in prostate cancer, and the current drug treatment of prostate cancer. Cav1 mainly affects the occurrence of prostate cancer through AKT/mTOR, H-RAS/PLCε, CD147/MMPs and other pathways, as well as substance metabolism including lipid metabolism and aerobic glycolysis. Baicalein, simvastatin, triptolide and other drugs can effectively inhibit the growth of prostate cancer. As a biomarker of prostate cancer, Cav1 may provide a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiang Bian
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Bei Li
- Department of Radiological Image, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Luting Zhang
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Yinuo Sun
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Manceau C, Fromont G, Beauval JB, Barret E, Brureau L, Créhange G, Dariane C, Fiard G, Gauthé M, Mathieu R, Renard-Penna R, Roubaud G, Ruffion A, Sargos P, Rouprêt M, Ploussard G. Biomarker in Active Surveillance for Prostate Cancer: A Systematic Review. Cancers (Basel) 2021; 13:4251. [PMID: 34503059 PMCID: PMC8428218 DOI: 10.3390/cancers13174251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Active surveillance (AS) in prostate cancer (PCa) represents a curative alternative for men with localised low-risk PCa. Continuous improvement of AS patient's selection and surveillance modalities aims at reducing misclassification, simplifying modalities of surveillance and decreasing need for invasive procedures such repeated biopsies. Biomarkers represent interesting tools to evaluate PCa diagnosis and prognosis, of which many are readily available or under evaluation. The aim of this review is to investigate the biomarker performance for AS selection and patient outcome prediction. Blood, urinary and tissue biomarkers were studied and a brief description of use was proposed along with a summary of major findings. Biomarkers represent promising tools which could be part of a more tailored risk AS strategy aiming to offer personalized medicine and to individualize the treatment and monitoring of each patient. The usefulness of biomarkers has mainly been suggested for AS selection, whereas few studies have investigated their role during the monitoring phase. Randomized prospective studies dealing with imaging are needed as well as larger prospective studies with long-term follow-up and strong oncologic endpoints.
Collapse
Affiliation(s)
- Cécile Manceau
- Department of Urology, CHU-IUC Toulouse, F-31000 Toulouse, France
| | - Gaëlle Fromont
- Department of Pathology, CHRU Tours, F-37000 Tours, France;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hospital, F-31130 Quint Fonsegrives, France; (J.-B.B.); (G.P.)
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, F-75014 Paris, France;
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)–UMR_S 1085, F-97110 Pointe-à-Pitre, France;
| | - Gilles Créhange
- Department of Radiation Oncology, Curie Institute, F-75005 Paris, France;
| | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, APHP, Paris–Paris University–U1151 Inserm-INEM, Necker, F-75015 Paris, France;
| | - Gaëlle Fiard
- Department of Urology, Grenoble Alpes University Hospital, Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France;
| | - Mathieu Gauthé
- AP-HP Health Economics Research Unit, INSERM-UMR1153, F-75004 Paris, France;
| | - Romain Mathieu
- Department of Urology, CHU Rennes, F-35033 Rennes, France;
| | - Raphaële Renard-Penna
- Department of Radiology, Sorbonne University, AP-HP, Pitie-Salpetriere Hospital, F-75013 Paris, France;
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, F-33000 Bordeaux, France;
| | - Alain Ruffion
- Service d’Urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69002 Lyon, France;
- Equipe 2–Centre d’Innovation en Cancérologie de Lyon (EA 3738 CICLY)–Faculté de Médecine Lyon Sud–Université Lyon 1, F-69002 Lyon, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, 33000 Bordeaux, France;
| | - Morgan Rouprêt
- Department of Urology, Sorbonne University, GRC 5 Predictive Onco-Uro, AP-HP, Pitie-Salpetriere Hospital, F-75013 Paris, France;
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, F-31130 Quint Fonsegrives, France; (J.-B.B.); (G.P.)
- Institut Universitaire du Cancer Oncopole, F-31000 Toulouse, France
| | | |
Collapse
|
3
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
4
|
Caveolin-1-mediated sphingolipid oncometabolism underlies a metabolic vulnerability of prostate cancer. Nat Commun 2020; 11:4279. [PMID: 32855410 PMCID: PMC7453025 DOI: 10.1038/s41467-020-17645-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Plasma and tumor caveolin-1 (Cav-1) are linked with disease progression in prostate cancer. Here we report that metabolomic profiling of longitudinal plasmas from a prospective cohort of 491 active surveillance (AS) participants indicates prominent elevations in plasma sphingolipids in AS progressors that, together with plasma Cav-1, yield a prognostic signature for disease progression. Mechanistic studies of the underlying tumor supportive onco-metabolism reveal coordinated activities through which Cav-1 enables rewiring of cancer cell lipid metabolism towards a program of 1) exogenous sphingolipid scavenging independent of cholesterol, 2) increased cancer cell catabolism of sphingomyelins to ceramide derivatives and 3) altered ceramide metabolism that results in increased glycosphingolipid synthesis and efflux of Cav-1-sphingolipid particles containing mitochondrial proteins and lipids. We also demonstrate, using a prostate cancer syngeneic RM-9 mouse model and established cell lines, that this Cav-1-sphingolipid program evidences a metabolic vulnerability that is targetable to induce lethal mitophagy as an anti-tumor therapy.
Collapse
|
5
|
Zhang J, Yan D, He L, Zhang Q, Wen S, Liu P, Zhou H, Peng Y. Expression of Caveolin-1 Is Associated With Thyroid Function in Patients With Human Papillary Thyroid Carcinoma. Dose Response 2020; 18:1559325820919330. [PMID: 32313526 PMCID: PMC7160781 DOI: 10.1177/1559325820919330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
Objective: The aim of this study was to evaluate the levels of caveolin-1 in thyroid
follicular epithelial cells of papillary thyroid cancer, follicular thyroid
cancer, and nonmalignant thyroid nodule benign follicular adenoma, as well
as to explore the relationship between the levels of caveolin-1 and thyroid
function. Methods: Thirty cases of papillary thyroid cancer, 10 cases of follicular thyroid
cancer, 32 cases of nonmalignant thyroid nodule benign follicular adenoma,
and 30 controls were enrolled in this study. Caveolin-1 expression in tissue
specimens obtained from these cases was evaluated by immunohistochemistry
and Western blotting. Results: Caveolin-1 expression in thyroid epithelial cells of patients with papillary
thyroid cancer, particularly female patients, was significantly higher than
that in patients with follicular thyroid cancer and nonmalignant thyroid
nodule benign follicular adenoma (P < .005). Serum
thyroid-stimulating hormone (TSH) levels in the caveolin-1-positive
expression group were lower than that in the caveolin-1-negative expression
group, and the lowest expression of caveolin-1 was detected in tissues of
patients with Graves’ disease. The serum TSH level was associated with
caveolin-1 expression in thyroid epithelial cells. Conclusion: Caveolin-1 may participate in regulating thyroid function and is a potential
biomarker of follicular thyroid cancer.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Endocrinology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Immunology, Nanjing Medical University, Nanjing, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongxia Yan
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, China
| | - Lianping He
- College of Experience Industry, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Qing Zhang
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Peiyu Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yongde Peng
- Department of Endocrinology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
6
|
Active surveillance for prostate and thyroid cancers: evolution in clinical paradigms and lessons learned. Nat Rev Clin Oncol 2019; 16:168-184. [PMID: 30413793 DOI: 10.1038/s41571-018-0116-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adverse effects of overdiagnosis and overtreatment observed in men with clinically insignificant prostate cancers after the introduction of prostate-specific antigen-based screening are now being observed in those with thyroid cancer, owing to the introduction of new imaging technologies. Thus, the evolving paradigm of active surveillance in prostate and thyroid cancers might be valuable in informing the development of future active surveillance protocols. The lessons learned from active surveillance and their implications include the need to minimize the use of broad, population-based screening programmes that do not incorporate patient education and the need for individualized or shared decision-making, which can decrease the extent of overtreatment. Furthermore, from the experience in patients with prostate cancer, we have learned that consensus is required regarding the optimal selection of patients for active surveillance, using more-specific evidence-based methods for stratifying patients by risk. In this Review, we describe the epidemiology, pathology and screening guidelines for the management of patients with prostate and thyroid cancers; the evidence of overdiagnosis and overtreatment; and provide overviews of existing international active surveillance protocols.
Collapse
|
7
|
Song C, Chen H, Song C. Research status and progress of the RNA or protein biomarkers for prostate cancer. Onco Targets Ther 2019; 12:2123-2136. [PMID: 30962694 PMCID: PMC6434918 DOI: 10.2147/ott.s194138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is a kind of male malignancy. Recently, a large number of studies have reported many potential biomarkers for the diagnosis and prognosis of prostate cancer. In this literature review, we have collected a number of potential biomarkers for prostate cancer reported in the last 5 years. Among them, some are undergoing Phase III clinical trials, and others have been approved by the US Food and Drug Administration. However, most are still in the period of basic research. The review will contribute to future research to find the biomarkers to guide clinicians to make personalized treatment decisions for each prostate cancer patient.
Collapse
Affiliation(s)
- Chunjiao Song
- Medical Research Center, Shaoxing People's Hospital/Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang Province, China,
| | - Huan Chen
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, China
| | - Chunyu Song
- Department of Anesthesia, The Second Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Codrici E, Albulescu L, Popescu ID, Mihai S, Enciu AM, Albulescu R, Tanase C, Hinescu ME. Caveolin-1-Knockout Mouse as a Model of Inflammatory Diseases. J Immunol Res 2018; 2018:2498576. [PMID: 30246033 PMCID: PMC6136523 DOI: 10.1155/2018/2498576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (CAV1) is the scaffold protein of caveolae, which are minute invaginations of the cell membrane that are involved in endocytosis, cell signaling, and endothelial-mediated inflammation. CAV1 has also been reported to have a dual role as either a tumor suppressor or tumor promoter, depending on the type of cancer. Inflammation is an important player in tumor progression, but the role of caveolin-1 in generating an inflammatory milieu remains poorly characterized. We used a caveolin-1-knockout (CAV1-/-) mouse model to assess the inflammatory status via the quantification of the pro- and anti-inflammatory cytokine levels, as well as the ability of circulating lymphocytes to respond to nonspecific stimuli by producing cytokines. Here, we report that the CAV1-/- mice were characterized by a low-grade systemic proinflammatory status, with a moderate increase in the IL-6, TNF-α, and IL-12p70 levels. CAV1-/- circulating lymphocytes were more prone to cytokine production upon nonspecific stimulation than the wild-type lymphocytes. These results show that CAV1 involvement in cell homeostasis is more complex than previously revealed, as it plays a role in the inflammatory process. These findings indicate that the CAV1-/- mouse model could prove to be a useful tool for inflammation-related studies.
Collapse
Affiliation(s)
- Elena Codrici
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Lucian Albulescu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Simona Mihai
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 2Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Radu Albulescu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 3National Institute for Chemical Pharmaceutical R&D, Bucharest, Romania
| | - Cristiana Tanase
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 4Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihail E. Hinescu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 2Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| |
Collapse
|