1
|
Diagnostic value of 3.0 T versus 1.5 T MRI in staging prostate cancer: systematic review and meta-analysis. Pol J Radiol 2022; 87:e421-e429. [PMID: 35979151 PMCID: PMC9373864 DOI: 10.5114/pjr.2022.118685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To compare the diagnostic performance of 3.0 T and 1.5 T MRI in the staging of prostate cancer. Material and methods English-language studies on the diagnostic accuracy of 3.0 T and 1.5 T MRI in prostate cancer staging published through May 2020 were searched for in relevant databases. The focus was on studies in which both 3.0 T and 1.5 T MRI were performed in the study population, to reduce interstudy heterogeneity. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the receiver operating characteristic curve were determined for 3.0 T and for 1.5 T along with 95% confidence intervals (CIs). Results Out of 8 studies identified, 4 met the inclusion criteria. 3.0 T (n = 160) had a pooled sensitivity of 69.5% (95% CI: 56.4-80.1%) and a pooled specificity of 48.8% (95% CI: 6.0-93.4%), while 1.5 T (n = 139) had a pooled sensitivity of 70.6% (95% CI: 55.0-82.5%; p = 0.91) and a pooled specificity of 41.7% (95% CI: 6.2-88.6%; p = 0.88). The pooled DOR for 3.0 T was 3 (95% CI: 0-26.0%), while the pooled DOR for 1.5 T was 2 (95% CI: 0-18.0%), which was not a significant difference (p = 0.89). Conclusions 3.0 T has slightly better diagnostic performance than 1.5 T MRI in prostate cancer staging (3 vs. 2), although without statistical significance. Our findings suggest the need for larger, randomized trials directly comparing 3.0 T and 1.5 T MRI in prostate cancer.
Collapse
|
2
|
Thaiss WM, Moser S, Hepp T, Kruck S, Rausch S, Scharpf M, Nikolaou K, Stenzl A, Bedke J, Kaufmann S. Head-to-head comparison of biparametric versus multiparametric MRI of the prostate before robot-assisted transperineal fusion prostate biopsy. World J Urol 2022; 40:2431-2438. [PMID: 35922717 PMCID: PMC9512861 DOI: 10.1007/s00345-022-04120-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Prostate biparametric magnetic resonance imaging (bpMRI) including T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) might be an alternative to multiparametric MRI (mpMRI, including dynamic contrast imaging, DCE) to detect and guide targeted biopsy in patients with suspected prostate cancer (PCa). However, there is no upgrading peripheral zone PI-RADS 3 to PI-RADS 4 without DCE in bpMRI. The aim of this study was to evaluate bpMRI against mpMRI in biopsy-naïve men with elevated prostate-specific antigen (PSA) scheduled for robot-assisted-transperineal fusion-prostate biopsy (RA-TB). Methods Retrospective single-center-study of 563 biopsy-naïve men (from 01/2015 to 09/2018, mean PSA 9.7 ± 6.5 ng/mL) with PI-RADSv2.1 conform mpMRI at 3 T before RA-TB. Clinically significant prostate cancer (csPCa) was defined as ISUP grade ≥ 2 in any core. Two experienced readers independently evaluated images according to PI-RADSv2.1 criteria (separate readings for bpMRI and mpMRI sequences, 6-month interval). Reference standard was histology from RA-TB. Results PI-RADS 2 was scored in 5.1% of cases (3.4% cancer/3.4% csPCa), PI-RADS 3 in 16.9% (32.6%/3.2%), PI-RADS 4 in 57.6% (66.1%/58.3%) and PI-RADS 5 in 20.4% of cases (79.1%/74.8%). For mpMRI/bpMRI test comparison, sensitivity was 99.0%/97.1% (p < 0.001), specificity 47.5%/61.2% (p < 0.001), PPV 69.5%/75.1% (p < 0.001) and NPV 97.6%/94.6% (n.s.). csPCa was considered gold standard. 35 cases without cancer were upgraded to PI-RADS 4 (mpMRI) and six PI-RADS 3 cases with csPCa were not upgraded (bpMRI). Conclusion In patients planned for RA-TB with elevated PSA and clinical suspicion for PCa, specificity was higher in bpMRI vs. mpMRI, which could solve constrains regarding time and contrast agent.
Collapse
Affiliation(s)
- Wolfgang M Thaiss
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
- Department of Nuclear Medicine, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Simone Moser
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
| | - Tobias Hepp
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
| | - Stephan Kruck
- Department of Urology, Siloah St. Trudpert Klinikum, Wilferdinger Str. 67, 75179, Pforzheim, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
| | - Marcus Scharpf
- Department of Pathology and Neuropathology, Eberhard-Karls-University, Liebermeisterstr. 8, 72076, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany.
| | - Sascha Kaufmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
- Diagnostic and Interventional Radiology, Siloah St. Trudpert Klinikum, Pforzheim, Germany
| |
Collapse
|
3
|
Schick F, Pieper CC, Kupczyk P, Almansour H, Keller G, Springer F, Mürtz P, Endler C, Sprinkart AM, Kaufmann S, Herrmann J, Attenberger UI. 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 1. Invest Radiol 2021; 56:680-691. [PMID: 34324464 DOI: 10.1097/rli.0000000000000812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Whole-body magnetic resonance imaging (MRI) systems with a field strength of 3 T have been offered by all leading manufacturers for approximately 2 decades and are increasingly used in clinical diagnostics despite higher costs. Technologically, MRI systems operating at 3 T have reached a high standard in recent years, as well as the 1.5-T devices that have been in use for a longer time. For modern MRI systems with 3 T, more complexity is required, especially for the magnet and the radiofrequency (RF) system (with multichannel transmission). Many clinical applications benefit greatly from the higher field strength due to the higher signal yield (eg, imaging of the brain or extremities), but there are also applications where the disadvantages of 3 T might outweigh the advantages (eg, lung imaging or examinations in the presence of implants). This review describes some technical features of modern 1.5-T and 3-T whole-body MRI systems, and reports on the experience of using both types of devices in different clinical settings, with all sections written by specialist radiologists in the respective fields.This first part of the review includes an overview of the general physicotechnical aspects of both field strengths and elaborates the special conditions of diffusion imaging. Many relevant aspects in the application areas of musculoskeletal imaging, abdominal imaging, and prostate diagnostics are discussed.
Collapse
Affiliation(s)
- Fritz Schick
- From the Section of Experimental Radiology, Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen
| | | | - Patrick Kupczyk
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Haidara Almansour
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Gabriel Keller
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Petra Mürtz
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Christoph Endler
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Alois M Sprinkart
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Sascha Kaufmann
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Judith Herrmann
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Ulrike I Attenberger
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| |
Collapse
|
4
|
Clinically Significant Prostate Cancer Detection With Biparametric MRI: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2021; 216:608-621. [DOI: 10.2214/ajr.20.23219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Sushentsev N, Kaggie JD, Slough RA, Carmo B, Barrett T. Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: A proof-of-concept study. PLoS One 2021; 16:e0245970. [PMID: 33513165 PMCID: PMC7846281 DOI: 10.1371/journal.pone.0245970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Facilitating clinical translation of quantitative imaging techniques has been suggested as means of improving interobserver agreement and diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) of the prostate. One such technique, magnetic resonance fingerprinting (MRF), has significant competitive advantages over conventional mapping techniques in terms of its multi-site reproducibility, short scanning time and inherent robustness to motion. It has also been shown to improve the detection of clinically significant prostate cancer when added to standard mpMRI sequences, however, the existing studies have all been conducted on 3.0 T MRI systems, limiting the technique's use on 1.5 T MRI scanners that are still more widely used for prostate imaging across the globe. The aim of this proof-of-concept study was, therefore, to evaluate the cross-system reproducibility of prostate MRF T1 in healthy volunteers (HVs) using 1.5 and 3.0 T MRI systems. The initial validation of MRF T1 against gold standard inversion recovery fast spin echo (IR-FSE) T1 in the ISMRM/NIST MRI system revealed a strong linear correlation between phantom-derived MRF and IR-FSE T1 values was observed at both field strengths (R2 = 0.998 at 1.5T and R2 = 0.993 at 3T; p = < 0.0001 for both). In young HVs, inter-scanner CVs demonstrated marginal differences across all tissues with the highest difference of 3% observed in fat (2% at 1.5T vs 5% at 3T). At both field strengths, MRF T1 could confidently differentiate prostate peripheral zone from transition zone, which highlights the high quantitative potential of the technique given the known difficulty of tissue differentiation in this age group. The high cross-system reproducibility of MRF T1 relaxometry of the healthy prostate observed in this preliminary study, therefore, supports the technique's prospective clinical validation as part of larger trials employing 1.5 T MRI systems, which are still widely used clinically for routine mpMRI of the prostate.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Joshua D. Kaggie
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, United Kingdom
| | - Rhys A. Slough
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, United Kingdom
| | - Bruno Carmo
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, United Kingdom
| | - Tristan Barrett
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, United Kingdom
- CamPARI Prostate Cancer Group, Addenbrooke’s Hospital and University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Schieda N, Lim CS, Zabihollahy F, Abreu-Gomez J, Krishna S, Woo S, Melkus G, Ukwatta E, Turkbey B. Quantitative Prostate MRI. J Magn Reson Imaging 2020; 53:1632-1645. [PMID: 32410356 DOI: 10.1002/jmri.27191] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate MRI is reported in clinical practice using the Prostate Imaging and Data Reporting System (PI-RADS). PI-RADS aims to standardize, as much as possible, the acquisition, interpretation, reporting, and ultimately the performance of prostate MRI. PI-RADS relies upon mainly subjective analysis of MR imaging findings, with very few incorporated quantitative features. The shortcomings of PI-RADS are mainly: low-to-moderate interobserver agreement and modest accuracy for detection of clinically significant tumors in the transition zone. The use of a more quantitative analysis of prostate MR imaging findings is therefore of interest. Quantitative MR imaging features including: tumor size and volume, tumor length of capsular contact, tumor apparent diffusion coefficient (ADC) metrics, tumor T1 and T2 relaxation times, tumor shape, and texture analyses have all shown value for improving characterization of observations detected on prostate MRI and for differentiating between tumors by their pathological grade and stage. Quantitative analysis may therefore improve diagnostic accuracy for detection of cancer and could be a noninvasive means to predict patient prognosis and guide management. Since quantitative analysis of prostate MRI is less dependent on an individual users' assessment, it could also improve interobserver agreement. Semi- and fully automated analysis of quantitative (radiomic) MRI features using artificial neural networks represent the next step in quantitative prostate MRI and are now being actively studied. Validation, through high-quality multicenter studies assessing diagnostic accuracy for clinically significant prostate cancer detection, in the domain of quantitative prostate MRI is needed. This article reviews advances in quantitative prostate MRI, highlighting the strengths and limitations of existing and emerging techniques, as well as discussing opportunities and challenges for evaluation of prostate MRI in clinical practice when using quantitative assessment. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Christopher S Lim
- Department of Medical Imaging, Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | | | - Jorge Abreu-Gomez
- Department of Medical Imaging, Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Satheesh Krishna
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gerd Melkus
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Eran Ukwatta
- Faculty of Engineering, Guelph University, Guelph, Ontario, Canada
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Stabile A, Giganti F, Kasivisvanathan V, Giannarini G, Moore CM, Padhani AR, Panebianco V, Rosenkrantz AB, Salomon G, Turkbey B, Villeirs G, Barentsz JO. Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review. Eur Urol Oncol 2020; 3:145-167. [DOI: 10.1016/j.euo.2020.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 01/19/2023]
|
8
|
Cho J, Ahn H, Hwang SI, Lee HJ, Choe G, Byun SS, Hong SK. Biparametric versus multiparametric magnetic resonance imaging of the prostate: detection of clinically significant cancer in a perfect match group. Prostate Int 2020; 8:146-151. [PMID: 33425791 PMCID: PMC7767942 DOI: 10.1016/j.prnil.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 11/16/2022] Open
Abstract
Background Biparametric (bp) magnetic resonance imaging (MRI) could be an alternative MRI for the detection of the clinically significant prostate cancer (csPCa). Purpose To compare the accuracies of prostate cancer detection and localization between prebiopsy bpMRI and postbiopsy multiparametric MRI (mpMRI) taken on different days, using radical prostatectomy specimens as the reference standards. Material and methods Data of 41 total consecutive patients who underwent the following examinations and procedures between September 2015 and March 2017 were collected: (1) magnetic resonance- and/or ultrasonography-guided biopsy after bpMRI; (2) postbiopsy mpMRI; and (3) radical prostatectomy with csPCa. Two radiologists scored suspected lesions on bpMRI and mpMRI independently using Prostate Imaging Reporting and Data System version 2. The diagnostic accuracy of detecting csPCa and the Dice similarity coefficient were obtained. Apparent diffusion coefficient (ADC) ratios were also obtained for quantitative comparison between bpMRI and mpMRI. Results Diagnostic accuracies on bpMRI and mpMRI were 0.83 and 0.82 for reader 1; 0.80 and 0.82 for reader 2. There are no significantly different values of diagnostic sensitivities or specificities between the readers or between MRI protocols. Intra-observer Dice similarity coefficient was significantly lower in reader 2, compared to that in reader 1 between the two MRI protocols. The range of mean ADC ratio was 0.281-0.635. There was no statistically significant difference in the ADC ratio between bpMRI and mpMRI. Conclusions Diagnostic performance of bpMRI without dynamic contrast enhancement MRI is not significantly different from mpMRI with dynamic contrast enhancement MRI in the detection of csPCa.
Collapse
Affiliation(s)
- Jungheum Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Hyungwoo Ahn
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Sung Il Hwang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
9
|
Kızılay F, Çelik S, Sözen S, Özveren B, Eskiçorapçı S, Özgen M, Özen H, Akdoğan B, Aslan G, Narter F, Çal Ç, Türkeri L. Correlation of Prostate-Imaging Reporting and Data Scoring System scoring on multiparametric prostate magnetic resonance imaging with histopathological factors in radical prostatectomy material in Turkish prostate cancer patients: a multicenter study of the Urooncology Association. Prostate Int 2020; 8:10-15. [PMID: 32257972 PMCID: PMC7125386 DOI: 10.1016/j.prnil.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Background Histopathological features after radical prostatectomy (RP) provide important information for the prognosis of prostate cancer (PCa). The possible correlations between Prostate-Imaging Reporting and Data Scoring System (PIRADS) scores in multiparametric magnetic resonance imaging (mpMRI) may also be predictive for prognosis. In this study, we aimed to evaluate the correlation of PIRADS scores with histopathological data. Methods A total of 177 patients who underwent preoperative mpMRI and RP for PCa from eight institutions were included in the study. Correlation of PIRADS score in preoperative mpMRI with adverse histopathological factors in RP specimen was investigated using univariate and multivariate analyses. Results The relationship between PIRADS score and postoperative extracapsular extension, lymphovascular invasion, and seminal vesicle involvement was significant (P < 0.001, P = 0.032, and P = 0.007, respectively). Although the PIRADS score was significantly correlated with the number of dissected lymph nodes (p = 0.026), it had no significant correlation with the number of positive nodes (P = 0.611). Total Gleason score, extracapsular extension, seminal vesicle invasion, and number of lymph nodes were found to be independent factors, which correlated with high PIRADS scores in ordinal logistic regression analysis. Conclusion PIRADS scoring system in mpMRI showed a statistically significant correlation with adverse histopathological factors in RP specimen. A higher PIRADS score may help to predict a higher Gleason score, indicating clinically important PCa as well as poor prognotic factors such as extracapsular extension, lymphovascular invasion, and seminal vesicle invasion that may indicate a higher risk of recurrence and the need for additional treatment.
Collapse
Affiliation(s)
- Fuat Kızılay
- Ege University, Department of Urology, Izmir, Turkey
| | - Serdar Çelik
- Izmir Bozyaka Training and Research Hospital, Urology Clinic, Izmir, Turkey
| | - Sinan Sözen
- Gazi University, Department of Urology, Ankara, Turkey
| | | | | | | | - Haluk Özen
- Hacettepe University, Department of Urology, Ankara, Turkey
| | - Bülent Akdoğan
- Hacettepe University, Department of Urology, Ankara, Turkey
| | - Güven Aslan
- Dokuz Eylül University, Department of Urology, Izmir, Turkey
| | | | - Çağ Çal
- Ege University, Department of Urology, Izmir, Turkey
| | | | | |
Collapse
|
10
|
Zhen L, Liu X, Yegang C, Yongjiao Y, Yawei X, Jiaqi K, Xianhao W, Yuxuan S, Rui H, Wei Z, Ningjing O. Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate Cancer: a systematic review and meta-analysis. BMC Cancer 2019; 19:1244. [PMID: 31870327 PMCID: PMC6929472 DOI: 10.1186/s12885-019-6434-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The application of multiparametric magnetic resonance imaging (mpMRI) for diagnosis of prostate cancer has been recommended by the European Association of Urology (EAU), National Comprehensive Cancer Network (NCCN), and European Society of Urogenital Radiology (ESUR) guidelines. The purpose of this study is to systematically review the literature on assessing the accuracy of mpMRI in patients with suspicion of prostate cancer. METHOD We searched Embase, Pubmed and Cochrane online databases from January 12,000 to October 272,018 to extract articles exploring the possibilities that the pre-biopsy mpMRI can enhance the diagnosis accuracy of prostate cancer. The numbers of true- and false-negative results and true- and false-positive ones were extracted to calculate the corresponding sensitivity and specificity of mpMRI. Study quality was assessed using QUADAS-2 tool. Random effects meta-analysis and a hierarchical summary receiver operating characteristic (HSROC) plot were performed for further study. RESULTS After searching, we acquired 3741 articles for reference, of which 29 studies with 8503 participants were eligible for inclusion. MpMRI maintained impressive diagnostic value, the area under the HSROC curve was 0.87 (95%CI,0.84-0.90). The sensitivity and specificity for mpMRI were 0.87 [95%CI, 0.81-0.91] and 0.68 [95%CI,0.56-0.79] respectively. The positive likelihood ratio was 2.73 [95%CI 1.90-3.90]; negative likelihood ratio was 0.19 [95% CI 0.14,-0.27]. The risk of publication bias was negligible with P = 0.96. CONCLUSION Results of the meta-analysis suggest that mpMRI is a sensitive tool to diagnose prostate cancer. However, because of the high heterogeneity existing among the included studies, further studies are needed to apply the results of this meta-analysis in clinic.
Collapse
Affiliation(s)
- Liang Zhen
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Chen Yegang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Yongjiao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Xu Yawei
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Kang Jiaqi
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Wang Xianhao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Song Yuxuan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Hu Rui
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Zhang Wei
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| | - Ou Ningjing
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300211 People’s Republic of China
| |
Collapse
|
11
|
Abstract
BACKGROUND Multiparametric MRI (mpMRI) is currently the most accurate imaging modality for detection and local staging of prostate cancer (PCa). Disadvantages of this modality are high costs, time consumption and the need for a contrast medium. AIMS The aim of the work was to provide an overview of the current state of fast and contrast-free MRI imaging of the prostate. RESULTS Biparametric examination protocols and the use of three-dimensional T2-weighted sequences are readily available methods that can be used to shorten the examination time without sacrificing diagnostic accuracy.
Collapse
|
12
|
Gupta RT, Mehta KA, Turkbey B, Verma S. PI‐RADS: Past, present, and future. J Magn Reson Imaging 2019; 52:33-53. [DOI: 10.1002/jmri.26896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Rajan T. Gupta
- Department of RadiologyDuke University Medical Center Durham North Carolina USA
- Department of Surgery, Division of Urologic SurgeryDuke University Medical Center Durham North Carolina USA
- Duke Cancer Institute Center for Prostate and Urologic Cancers Durham North Carolina USA
| | - Kurren A. Mehta
- Department of RadiologyDuke University Medical Center Durham North Carolina USA
| | - Baris Turkbey
- National Cancer Institute, Center for Cancer Research Bethesda Maryland USA
| | - Sadhna Verma
- Cincinnati Veterans Hospital, University of Cincinnati Cancer InstituteUniversity of Cincinnati Medical Center Cincinnati Ohio USA
| |
Collapse
|
13
|
Draulans C, Everaerts W, Isebaert S, Gevaert T, Oyen R, Joniau S, Lerut E, De Wever L, Weynand B, Vanhoutte E, De Meerleer G, Haustermans K. Impact of Magnetic Resonance Imaging on Prostate Cancer Staging and European Association of Urology Risk Classification. Urology 2019; 130:113-119. [DOI: 10.1016/j.urology.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
|
14
|
Camtosun A, Gökçe H. Comparison of prostate biopsy pathology and radical prostatectomy pathologies. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.534851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Steinkohl F, Pichler R, Junker D. Short review of biparametric prostate MRI. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2018; 11:309-312. [PMID: 30595756 PMCID: PMC6280777 DOI: 10.1007/s12254-018-0458-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 01/04/2023]
Abstract
Magnetic resonance imaging (MRI) of the prostate has become the gold standard for visualization of prostate cancer. Prostate MRI is usually performed as multiparametric MRI (mpMRI). Since mpMRI has several drawbacks, a biparametric MRI (bpMRI) of the prostate has been proposed. Many studies have been published on mpMRI and bpMRI in recent years. This short review offers an overview of the latest developments in this rapidly evolving field of research.
Collapse
Affiliation(s)
- Fabian Steinkohl
- 1Department für Radiologie, Medizinische Universität Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Renate Pichler
- 2Universitätsklinik für Urologie, Medizinische Universität Innsbruck, Anichstr. 35, Innsbruck, 6020 Austria
| | - Daniel Junker
- Diagnostische und Interventionelle Radiologie, Landeskrankenhaus Hall in Tirol, Milser Str. 10, Hall in Tirol, 6060 Austria
| |
Collapse
|